Вступ
Велика опікова травма викликає суттєве гемодинамічні та кардіодинамічні порушення, які сприяють розвитку сепсису, поліпрогранної недостатності та смерті. Кардіогенний стрес є відмінною ознакою гострі фази відповіді, а гірші результати лікування опікового пошкодження пов’язані саме з тяжкою серцевою дисфункцією. Скомпрометовані серцеві функції призводять до гіпоперфузії органів, порушення периферичної мікроциркуляції, збільшення зони опіку і зниження резистентності до бактеріальної інфекції в області опікової поверхні. У статті наведені результати дослідження структурних змін міокарду щури в ранньому періоді експериментальної опікової хвороби. Для виконання поставленних завдань проведили гістологічне дослідження міокарду, а також дослідження клітинного циклу та визначення вмісту ДНК в ядрах клітин міокарда щурів методом проточної ДНК-цитофлуориметрії.

Ключові слова: опікова хвороба, міокард, морфологія, клітинний цикл, щури.

Матеріали та методи
Експериментальне дослідження було проведено на базі віварію, проблемної науково-дослідної лабораторії функціональної морфології та генетики розвитку наукового-дослідного центру (посвідчення ДФЦ МОЗ України № 003/10 від 11.01.2010 року) та хімічної наукової лабораторії кафедри фармаукології (посвідчення ДФЦ МОЗ України №000679 від 11.01.2008 року) Вінницького національного медичного університету ім. М.І. Пирогова.

Всі маніпуляції з тваринами та їх утримання проводили у відповідності до "Загальних етичних принципів експериментів на тваринах", ухвалених Першим національним конгресом з біоетики (Київ, 2001), також керувалися рекомендаціями "Європейської конвенції про захист хребетних тварин, які використовуються для експериментальних та інших наукових цілей" (Страсбург, 1985) і положеннями "Правил доклінічної оцінки безпеки фармаукологічних засобів (GLP)", у повній мірі дотримувалися правил гуманного відновлено до експериментальних тварин, що затверджені комітетом з біоетики Вінницького національного медичного університету ім. М.І. Пирогова (протокол № 1 від 14.01.2010 року).

В дослідження було включено 48 білих лабораторних щурів-самців масою 160-180 грам, отриманих із віварію Державної установи "Інститут фармаукології та токсикології НАМН України".

Згідно завдань дослідження щури були випадковим чином розподілені на дві групи: контрольну групу склали 19 інтактних тварин, дослідну групу - 29 тварин із експериментальною опіковою хворобою та корекцією гіповолемічних змін фізіологічним розчином.

Термічну травму моделювали під загальним знеболіванням за методикою Regas (1992) [3]. Інфузію фізіологічного розчину проводили з метою корекції гіповолемічних змін через катетер введення у стенову вену. Перше введення здійснювали через 1 годину після моделювання опікової травми, наступні інфузії виконували 1 раз на добу протягом перших 7 діб проведення.
експерименту.

Тварин виводили з експерименту на 1, 3, 7 добу шляхом передозування прополіфовому наркозу із дотриманням основних вимог до етваназії (Додаток 4 "Правила проведення роботи з іспитуванням експериментальних животних", затверджений наказом №755 від 12.08.77 р. МОЗ СРСР "О мерах по дальнейшему совершенствованию организационных форм работы с использованием экспериментальных животных", Хельсинської декларації Всесвітньої Медичної Асіації (2000)).

Серце щурів відправляли на рістологічне та цитофлуорометричне дослідження.

Вилучення матеріалу для гістологічного дослідження в усіх випадках проводили з лівого шлуночка щурів. Отримані препарати фіксовали у 10% розчині нейтрального формальдегіду протягом 48 годин, промивали, зневоднювали шляхом проведення через батарею спіртів зростаючої концентрації, проводили через хлороформ та готували з них парафінові блока. Зрізи лівого шлуночка товщиною 6-8 мкм готували на ротаційному мікротомі, розміщуючи на склі. Для вивчення морфоцитоархітектоніки лівого шлуночка забарвлювали зрізи гематоксілін-еозином та за ван-Гізон (для встановлення змін питаючої ваги сполучної тканини міокарду). Гістологічне дослідження міокарда здійснювали на мікроскопі Laborlux S (Leitz) при збільшенні: 10/0,25х10, 40/0,65х10 і 100/1,25х10.

Для мікроскопічного вивчення препаратів та фотографій морфологічної картини ми застосовували цитофлуорометричний комплекс "Olympus CX-41".

Для виявлення особливостей змін показників клітинного циклу та визначення вмісту ДНК в ядрах клітин міокарда щурів був використаний метод проточної ДНК-цитофлуорометрії.

Після вилучення серця із тіла щура готували суспензію ядер з клітин міокарда лівого шлуночка щурів. Суспензію отримували за допомогою розчину для дослідження ядерної ДНК CyStain DNA Step 1 фірми Partec, Німеччина, відповідно до протоколу-інструкції виробника. Даний розчин дозволяє виконувати екстракцію ядер та маркувати ядерну ДНК діамідинофенілінолідон (DAPI). У процесі виготовлення нуклеарних суспензій ми використовували одноразові фільтри CellTrics 50 мкм (Partec, Німеччина).

Проточний аналіз виконували на багатофункциональному науковом-дослідному проточному цитофлуорометрі "Partec PAS" фірми Partec (Німеччина), навуко-дослідному центрі Вінницького національного медичного університету ім. М.І. Пирогова. Для збільшення флуоресценції DAPI ми застосовували УФ-випромінювання. З кожного зразка ядерної суспензії аналізу підлягло 10 тис. подій. Розподіл ДНК, що відображає клітинний цикл і фрагментацию ДНК представлено на сторінці з однією гістограмою з використанням лінійної шкали. Образували, побудував графіків, циклічний аналіз клітин виконували за допомогою прикладного програмного забезпечення Flomax (Partec, Німеччина), яке було на- дано фірмою-виробником до апаратури, у повній цифровій відповідності згідно математичної моделі, де визначали:

- G0/G1 (G1%) - відсоток клітинного циклу G0/G1 до всіх клітин клітинного циклу (вміст ДНК=2c);
- S (%) - відсоток клітинного циклу у фазі синтезу ДНК до всіх клітин клітинного циклу (вміст ДНК>2c та<4c);
- G2+M (G2M%) - відсоток клітин клітинного циклу у фазі G2+M до всіх клітин клітинного циклу (ДНК=4c), або клітин з вмістом ДНК=4c;

Визначення фрагментации ДНК виконано шляхом вилучення SUB-G0/G1 ділянки на ДНК-гістограмах - RN1 перед піком G0/G1, яка вказує на ядра клітин з вмістом ДНК<2c. Це відсоток ядер клітин в стані апоптозу.

IP - показник проліферації (проліферативний індекс), який визначається за сумою показників S+G2+M. Чим більшого його значення, тим інтенсивніша проліферативна активність.

BP - блок проліферації. Збільшення числа клітин в фазі G2+M при низьких значеннях S-фази свідчить про затримку (блок проліферації) клітинного циклу в стадії G2+M. Цей показник оцінюється за співвідношенням: S/(G2+M).

Статистичний аналіз отриманих результатів проводили за допомогою пакету програм "STATISTICA 6.1" (ліцензійний номер BXXR901246022FA).

Результати. Обговорення

Міокард, у контрольній групі тварин (без опікових травмів та введення будь-яких речовин) у всі встановлені терміни мав типову для щурів гістологічну будову. Скоручувані елементи міокарда були представлені повністю відсутніми волокнами (кардіоміоцитами), які рівномірно забарвлювалися гематоксілін та еозином. Діаметр кардіоміоцитів у середньому склал: на першу добу експерименту 14,1±0,7 мкм, на третю - 11,9±0,51 мкм, на сьому - 15,3±0,75 мкм, площа їх перечного перетину - 161,5±7,59 мкм2, 113,3±4,3 мкм2 та 174,2±6,97 мкм2 , відповідно. Одне округло-овальне ядро із рівномірно розподіленим хроматином було розташоване у центральних відділах кардіоміоцитів. Площа перечного перетину ядер, у середньому, досіжувала: 29,8±1,26 мкм2 на першу добу, 27,7±2 мкм2 на третю та 28,7±1,22 мкм2 на сьому добу експерименту. При аналізі поздовжніх зрізів ми спостерігали поперечну посмугованість кардіоміоцитів на всьому протязі, яка була чітко вираженою. Поздовжня посмугованість була менш чітко означеною. Вставні диски між кардіоміоцитами ми спостерігали у вигляді поперечних оксифільних смужок. У середньому ширина зони перимірія складала: на першу добу експерименту 29,5±1,5 мкм, на третю - 33,8±1,39 мкм, на сьому -
25,3 ± 1,21 мкм, эндодимію - 4,9 ± 0,22 мкм, 5,1 ± 0,25 мкм та 4,6 ± 0,21 мкм, відповідно. Ознаки запалення у вигляді скручених клітинних елементів у стromi нами виявлені не були. Ми відмітили відносно рівномірне поширення крововаповинення судин гемомікроцикулярного русла. Будова стінки судин гемомікроцикулярного русла мала звичайну структуру.

У тварин з охопленою травмою (дослідна група), яким вводили фізіологічний розчин, протягом всіх визначених термінів у міокарді відмічали виразні зміни дисцикулярного характеру з боку судин гемомікроцикулярного русла (в основному вен малого калібр, венул та капілярів). Просвіт цих судин, в основному, був розширений, виповнений вільно розташуваніми серед плазми еритроцитами. Стінка їх була помірно потоншена. У стінці артеріол ми спостерігали ознаки плазмозарії. На першу добу експерименту індекс Кер- ногана для артеріол складав 0,26 ± 0,08, на третю - 0,23 ± 0,009, на сьому - 0,22 ± 0,08, для венул - 0,16 ± 0,006, 0,15 ± 0,008 та 0,17 ± 0,007, відповідно. Також спостерігали ознаки венозного поникнення. Крім того, місцями, венул з розширеним просвітом були виповнені невеликою кількістю плазми, та містили деформовані еритроцити переважно по периферії судин. Тобто, ми це розглядали як явища венуларного стазу. У частини венул, еритроцити, розташовані у просвіті судин, утворювали цільній конгломерат, відокремлений від стінки судини просвітом та вільно розташованими форменими елементами крові (сладж-феномен). В епікардіальній зміні ми визначали з боку гемокапілерів. На деяких ділянках капіляри були блоковані для кровотоку (просвіт їх практично не визначався), на інших, навпаки, були різкі, в т.ч. паретично розширени, з ознаками поникнення або еритростазу. Такі зміни капілярного русла відбувалися на 3-ю добу експерименту. З боку строми міокарду були відмічені дрібно-вогнищеві та потирені (на 3-о та 7-му добу) діапедезні крововиливі у перімісії, а також помірно рівномірне, розширення зони пері- та ендодимію (39,8 ± 2,03 мкм та 13,5 ± 0,62 мкм, відповідно, на першу добу, 42,1 ± 2,1 мкм та 16,4 ± 0,8 мкм, відповідно, на третю добу, 44,5 ± 2,18 мкм та 18,3 ± 0,91 мкм, відповідно, на сьому добу), що ми розглядали, як наявність інтерстиційного набряку серцевого м'язу.

Якщо венозна гіперемія мала відносно рівномірно поширенний характер, то вибачте стазу, інтерстиціальної набряку, сладж-феномен і діапедезні крововиливу в капілярах відзначалася частіше у субендокардіальних відділах міокарда. Ми спостерігали також обмежений субендотеліальний набряк строми шлунків серця.

Середній діаметр кардіоміоцитів склав на першу добу 13,7 ± 0,41 мкм, на другу - 16,8 ± 0,34 мкм, на сьому 15,7 ± 0,47 мкм, середня площа їх поперечного зрізу - 122,1 ± 4,15 мкм², 220,6 ± 8,6 мкм², 189,7 ± 7,59 мкм², відповідно. Площа поперечного зрізу ядер, в середньому, складала: на першу добу 30,0 ± 1,26 мкм², на другу - 33,1 ± 1,55 мкм², на сьому - 39,8 ± 1,83 мкм² При цьому, на 3-о та 7-му добу відзначалася фрагментация поодиноких м'язових волокон, виявлялись зони міофіброза, регенерації і ділянки з розволокненням і хилоден та звивисті, як поодиноких, так і окремих груп м'язових волокон. Спостерігалася поперечна міофіброза кардіоміоцитів. Поряд з цим, на 7-му добу виявлялися поодинокі кардіоміоцити з ознаками контрактурного пошкодження: посиленням аніозотропії А-дісків міофібри з одночасним стисненням ізотропних діскув, місцями ж до їх повного зламання та утворення суккупного аніозотропного конгломерату, в якому не визначалась поперечна посумовуваність. Також, починаючи з третьої доби, в 1,1 ± 0,011% (1,4 ± 0,013% на 7-му добу) ядер збережених кардіоміоцитів хроматин конденсувався по периферії ядра у вигляді чітко виражених волокон невидалення з нерівними отворами, а також відтворювався невеликі грудочки у центрі ядра. Такі зміни ядер клітин ми розглядали як початок апоптозу. Крім того, на 7-му добу в 0,02 ± 0,0005 клітин мали місце явища їх глибчайшого розпаду, каріоплазію та лізис ядер, що ми розглядали як ознаки їх некрозу. В значній частині таких кардіоміоцитів зміни ядра споруджувались у заподіїванням виразному везициозному розшаруванню.
З і 7 добу після початку експерименту (табл. 1). Більшість клітин (ближко 80%) у міокарді тварин контрольної групи перебувала у фазі G0/G1, а порівняння кількість клітин в фазі S та інтервал SUB-G0/G1 дві підстави припустити існування певного балансу між процесами синтезу і фрагментації ядерної ДНК у нешкоджений та зниженій міокарда. На відміну від показників клітинного циклу міокардіоцитів тварин групи контролю, на тлі опіку і застосування ФР вже через 1 добу дослідження були виявлені зміни, які полягали у збільшенні частки клітин, що знаходяться у фазі G0/G1 (p<0,05) а також клітин з фрагментованою ДНК (інтервал SUB-G0/G1) (p<0,05).

Через 3 доби після опікового ураження шкіри і застосування ФР зберігалася менша кількість клітин у фазі G2+M (p<0,01) на тлі зменшення частки клітин у фазі G2+M (p<0,01). При цьому показники S-фази міокардіоцитів групи тварин через 1 добу після опіку не відрізнялися від показників контрольної групи. Відповідно, були виявлені істотне зменшення індексу проліферації IP (p<0,01) і нарощення блюку проліферації BP (p<0,05) через 1 добу після опікового ураження порівняно з показниками контрольної групи.

Через 3 доби після опікового ураження шкіри і застосування ФР зберігалася менша кількість клітин у фазі G2+M одночасно з підвищенням вмістом у міокарді клітин SUB-G0/G1. При цьому також зберігався більшіший показник BP (p<0,01) у порівнянні з аналогічним показником контрольної групи у відповідний період. Через 3 доби після опікового ураження, на відміну від показників клітинного циклу кардіоміоцитів через 1 добу після опіку, ми спостерігали зменшення частки клітин G0/G1 і більшій індекс проліферації, які, однак, не мали достовірних відмінностей від показників контрольної групи (p>0,05). Порівняння показників клітинного циклу міокардіоцитів групи тварин з опіковим ураженням через 1 і 3 доби показало, що на тлі меншої частки клітин фази G0/G1 і більшої частки клітин фази G2+M істотно був більшій індекс проліферації (IP) (p<0,05). Однак, разом з тим, зберігалася значно більша частка клітин з фрагментованою ДНК (SUB-G0/G1) і показника блюку проліферації (p<0,05) в порівнянні з аналогічними показниками групи контролю. Досить несподіваним виявилося більший показник S-фази через 7 діб після опікового ураження у порівнянні з цим же показником, визначенням у контрольній групі (p<0,05). І у групі тварин через 1 добу після опікового ушкодження шкіри (p<0,05).

Результати проведеного дослідження свідчать про досягнення стабільної картини показників клітинного циклу у клітинах міокарда тварин без опікової травми з переважанням, з одного боку, клітин, що знаходяться у фазі G0/G1, і захистом певного балансу між процесами синтезу ядерної ДНК і апоптозу. На тлі опікового ураження через 1 добу у міокардіоцитах переважали процеси апоптозу, про що свідчить суттєвого збільшення клітинної популяції з фрагментованою ДНК при збереженні часток клітин, що синтезують ДНК. Поряд з цим через 1 добу після опіку відбувається збільшення частки клітин, що знаходяться у фазі G0/G1, і блюку проліферації, а також менший індекс проліферації за рахунок менше го числа клітин у фазі G2+M. При подальшому розвитку опікового ураження вже через 3 доби відбувалася зміна у бік нормалізації показників клітинного циклу, що проявлялося в вигляді меншої частки клітин у фазі G0/G1 і більшого індексу проліферації. На тлі опікового ураження (через 3 і 7 діб) зберігається значна кількість клітин у стані апоптозу і спостерігалося більше значення блюку проліферації, що може вказувати на недостатність компенсаційних можливостей організму до відновлення. Незважаючи на існування поглядів про захисну роль апоптозу після опікового ураження, зіставлення клітинних даних інших дослідників і отриманими нами дозволяє зробити висновок, що ураження серця може відбуватися саме на тлі поширення процесів апоптозу. Проте це може свідчити збільшення і показника S-фази, виявлене через 7 діб після опікового ураження, що, у свою чергу, вказує на неможливість процесів репаразії кардіоміоцитів у ранній період перебігу опікової травми.

Висновки та перспективи подальших розробок

1. Дані гістологічного дослідження свідчать про наявність значних дифтрофічних (а, особливо на 7-му добу, також некробіотичних та некротичних) змін, спостеріганих у функціональних клітинах серцевого м'яза, порушення його живлення внаслідок ушкодження судин гемомікроциркуляторного русла у експериментальних
Список літератури

Фоміна Л.В., Андрійчук В.М., Радюга Р.В.
СТРУКТУРНІ ЕЙЗНАННЯ МІОКАРДА КРІСЬ В РАННІМ ПЕРИОДЕ ЕКЗЕРПІМЕНТАЛЬНОЇ ОЖОГОВОЇ БОЛЕЗНІ

Резюме. Батьківська ожогова травма вызиває сучасні соматичні і кардіообмінові нарушения, які спосібнюють розвиток сепсиса, поліорганної недостатності і смерті. Кардіогенний стисок є одним з оцінними параметрами ожогового поранення і стосовно тяжкості смертельної дисфункції. Окремо проаналізовано серцеву функцію, яка включає гіпоперфузію органів, наявність та периферійної микрозістратури, збільшення зони ожога і зниження резистентності до бактеріальної інфекції в області ожогової поверхні. В статті приведені результати історії дослідження структурних змін міокарда в ранньому періоді експериментальної ожогої болезні. Для виконання поставленних завдань проводили гістологічне і імунологічне інвертування, а також визначення клеточного циклу в герметичному касеті міокарда.

Ключові слова: ожогова болезнь, міокард, морфологія, клеточний цикл, крісся.

Fomina L.V., Andriychuk V.M., Radoha R.V.
STRUCTURAL CHANGES IN THE RATS’ MYOCARDIUM DURING EARLY PERIOD OF EXPERIMENTAL BURN DISEASE

Summary. A large burn injury causes significant hemodynamic and cardiodynamic disturbances that contribute to sepsis, multiple organ failure and death. Cardiogenic stress is a distinct feature of the acute phase of response, and the worst results of treatment for burn injury are associated with severe cardiodynamic dysfunction. Compromised cardiac function leads to hypoperfusion of organs, disturbance of peripheral microcirculation, increase of burn area and decrease of resistance to bacterial infection in the burn area. The article presents the results of the study of structural changes in the myocardium of rats in the early period of experimental burn disease. To perform the tasks, histological examination of the myocardium was performed, as well as the study of the cell cycle and the determination of the DNA content in the nuclei of the rat myocardium by the flow-through DNA-cytfluorometry method.

Key words: burn disease, myocardium, morphology, cell cycle, rats.

рецензент - д.мед.н., проф. Максімський О.Є.
Стаття надійшла до редакції 22.06.2017 р.

Фоміна Людмила Василівна - д.мед.н., професор кафедри анатомії людини ВНМУ ім. М.І. Пирогова; +38(098)2646166; fomina@vmnu.edu.ua
Andriychuk Віталій Михайлович - д.мед.н., доцент кафедри анатомії людини ВНМУ ім. М.І. Пирогова; +38(067)4231662
Радюга Руслан Володимирович - асистент кафедри анатомії людини ВНМУ ім. М.І. Пирогова; +38(097)7746859; ruslan-radega@ukr.net