Modeling by regression analysis of the transverse dimensions of the upper and lower jaws and sagittal characteristics of the dental arch in young women with a very wide face, depending on the features of the odonto- and cephalometric indicators

Pozur T.P.
National Pirogov Memorial Medical University, Vinnytsya, Ukraine

Providing maximum individual orthodontic care to the patient is impossible without the use of modern instrumental methods of research and considering odontometric and cephalometric characteristics of representatives of relevant populations of different sex and age. The purpose of the study is to develop and analyze regression models of computed tomography sizes necessary to construct the correct form of dental arches in young women with a very wide face, depending on the characteristics of odonto- and cephalometric indicators. Primary computed tomographic indices of tooth size and cephalometric parameters of 50 young women with normal occlusion close to orthognathic occlusion were obtained from the data bank of the scientific-research center of National Pirogov Memorial Medical University, Vinnytsya. Face type was determined using the Garson morphological index. The following distribution is established: with a very wide face - 21, with a wide face - 20, with a medium face - 6, with a narrow face - 3, with a very narrow face - 0. Therefore, only young women with a wide and very wide face were selected for further modeling. The development of regression models of linear dimensions necessary for the construction of the correct form of dental arches of the upper and lower jaws in depending on the features of odonto- and cephalometric indicators in young women with very wide faces, was carried out in a licensed statistical package "Statistica 6.0". It is established that young women with a very wide type of face with normal occlusion have built all 18 possible reliable models (with a coefficient of determination from 0.863 to 0.962) of linear computed tomography sizes used to construct the correct form of dental arches of the upper and lower jaws of age. Among the odontometric indicators, the most frequently included models are: width of crowns of teeth in mesio-distal direction (20.7 %); width of the teeth at the level of the anatomical neck in the mesio-distal direction (14.4 %) and width of the crowns of the teeth in the vestibulo-oral direction (10.8 %); and among the cephalometric indicators - the greatest length of the head (3.6 %); average width of face and height of lower lip (2.7 % each). Thus, in young women with a very wide type of face with normal occlusion close to orthognathic occlusion, all 18 possible reliable regression models of reproduction of the individual characteristics of the dental arches of the upper and lower jaws depending on the odonto- and cephalometric parameters were developed and analyzed.

Keywords: regression analysis, young women with orthognathic bite, very wide face type, dental arch, odontometric and cephalometric indicators.

Introduction

Dentistry, as an independent scientific discipline, does not have all the necessary tools to meet the current challenges of health care delivery. The problems of individual approach to each patient are the main need for dental care,
especially when it comes to creating the perfect, harmonious smile. In such cases, the smile must first and foremost be harmonious to the face.

An excellent tool for solving this problem is anthropometry - an applied tool of physical anthropology. Previously used exclusively to address the needs of paleoanthropology and forensic anthropology, this tool is now effective in virtually every field of medicine (the possibility of predicting the development of acne, the individual size of various internal organs, etc.) [3, 9, 13], including dentistry [6, 10, 15].

This topic has gained a lot of attention in the last decade not only abroad but also in Ukraine. There are scientific works on determining the relationship between cephalometric indices and the size of certain teeth, work on identifying normative teleroentgenographic indices for the population of Ukraine, etc [8, 12, 20]. That is, this topic is extremely relevant at the moment.

The question of studying the effect of face type on the future parameters of dental arches is still a poorly researched question in both Ukrainian and world scientific literature. Only understanding the process of forming a smile as a complex mechanism of interaction of all odontometric and cephalometric parameters can allow dentists to further form correct, harmonious smiles. However, research in this field should consider both ethnic, age and gender characteristics of a person.

The purpose of the study is to develop and analyze regression models of computed tomography sizes necessary to construct the correct form of dental arches in young women with very wide faces, depending on the features of odonto- and cephalometric indicators.

Materials and methods

Primary computed tomographic indices of tooth size (determined using a Veraviewepocs 3D, Morita dental cone-ray tomograph) and cephalometric parameters of 50 young women with normal occlusion close to orthognathic occlusion were obtained from the data bank of the National Pirogov Memorial Medical University, Vinnytsya Research Center. All surveys of young men and young women were conducted on the informed consent principle.

According to the scheme developed by I.V. Gunas, N.A. Dmitriev and A.V. Marchenko [11], in the i-Dixel One Volume Viewer [Ver.1.5.0] J. Morita Mfg. Cor software, defined the metric values of the central (medial [4]) and lateral [4] incisors, canines, first and second premolars [4], as well as the first molars [4] of the upper and lower jaw. Since no differences were found in this study [11] when comparing the sizes of the same teeth of the right and left sides, in subsequent studies the average values of the corresponding teeth on the upper and lower jaws were used: upper or lower central incisors (11 or 41, respectively); upper or lower lateral incisors (12 or 42, respectively); upper or lower canines (13 or 43, respectively); upper or lower first premolars (14 or 44, respectively); upper or lower second premolars (respectively 15 or 45); upper or lower first molars (16 or 46 respectively).

Cephalometric dimensions were measured using a soft centimeter tape and Martin’s compass [5]. The type of face was determined using the Garson morphological...
index - the ratio of the morphological length of the face (the direct distance from the nasion to the gnathion) to the width of the face in the area of zygomatic arches [22]. The following distribution of young women is established: with a very wide face - 21, with a wide face - 20, with a medium face - 6, with a narrow face - 3, with a very narrow face - 0. Therefore, to model the indicators necessary for correct construction of dental arches depending on the features of odontometric and cephalometric indicators, only young women with a wide and very wide face were selected.

By means of direct stepwise regression analysis in the license package "Statistica 6.0" we constructed mathematical models of the following characteristics of dental arches (mm): NAPX_16 - distance between the apexes of palatine (palatal) roots of the upper first molars (Fig. 1); DAPX_16 is the distance between the apexes of the distal roots of the upper first molars (Fig. 2); MAPX_16 is the distance between the apexes of the medial buccal (vestibular) roots of the upper first molars (Fig. 3); MAPX_46 is the distance between the apexes of the medial roots of the lower first molars (Fig. 4); DAPX_46 is the distance between the apexes of the distal roots of the lower first molars (Fig. 5); PONM - distance between Pon molar points (Fig. 6a); PONPR - distance between premolar points beyond Pon (Fig. 6b); VESTBUGM - distance between the vestibular medial tubercles of the upper first molars (Fig. 7); BGR13_23 is the distance between the tubercles of the upper canines (Fig. 8a); APX13_23 is the distance between the apexes of the roots of the upper canines (Fig. 8b).
8b); BUGR33_43 - distance between tubercles of lower canines (Fig. 9a); APX33_43 is the distance between the apexes of the roots of the lower canines (Fig. 9b); DL_C is the canine sagittal distance of the dental arch of the upper jaw (Fig. 10c); DL_F is the premolar sagittal distance of the maxillary dental arch (Fig. 10f); DL_S is the molar sagittal distance of the dental arch of the upper jaw (Fig. 10s); GL_1 - depth of palate at canine level (Fig. 11a); GL_2 is the depth of the palate at the level of the first premolars (Fig. 11b); GL_3 is the depth of the palate at the level of the first molars (Fig. 11c).

Results

In young women with a very wide face type regression models of linear sizes necessary to construct the correct form of dental arches, depending on the odontometric and cephalometric indicators have the following linear equations:

\[ NAPX_{16} = 35.88 - 0.686 \times AU\_GO + 2.245 \times VSHIR\_11 + 1.838 \times TSHIR\_44 + 2.537 \times VSHIR\_45 - 3.986 \times MDDEG\_43 + 2.513 \times VSHIR\_14 - 0.642 \times VLROOT\_11 \quad (R^2=0.929; F_{(7,13)}=24.25; p<0.001); \]

\[ DAPX_{16} = 22.02 - 2.720 \times L\_14 + 2.625 \times TSHIR\_45 - 0.649 \times STO\_GN + 0.344 \times G\_OP + 3.183 \times VSHIR\_15 + 1.667 \times MDDEG\_11 \quad (R^2=0.922; F_{(6,14)}=27.45; p<0.001); \]
MAPX_16 = -19.79 + 4.242 x VSHIR_11 - 4.486 x MDDEG_12 + 2.620 x TSHIR_13 + 0.091 x DUG_AU_AU - 0.914 x ALROOT_13 + 0.858 x L_42 (R²=0.901; F[8.14]=21.25; p<0.001);

MAPX_46 = 81.08 + 6.690 x TSHIR_43 - 1.690 x TSHIR_45 - 2.881 x VSHIR_16 - 0.267 x G_OP + 0.066 x DUGS_G_OP - 1.471 x VSHIR_14 + 0.788 x MDDEG_41 (R²=0.945; F[8.14]=29.30; p<0.001);

DAPX_46 = 36.75 + 4.814 x TSHIR_43 - 0.896 x ALROOT_41 - 3.987 x MDDEG_43 + 0.583 x STO_SPM - 3.409 x VDEG_43 + 2.726 x VDEG_12 + 0.527 x L_45 (R²=0.904; F[8.14]=16.21; p<0.001);

PONM = 15.15 + 2.965 x VDEG_12 + 0.183 x ZM_ZM - 3.846 x VSHIR_44 + 2.323 x MDDEG_42 + 1.573 x TSHIR_42 + 1.017 x MDDEG_41 (R²=0.935; F[8.14]=33.81; p<0.001);

VESTBUGM = 64.42 - 1.114 x L_44 + 3.303 x TSHIR_42 + 0.403 x MF_MF - 0.168 x AL_AL - 2.578 x VDEG_42 + 2.066 x VDEG_12 - 1.040 x TSHIR_11 (R²=0.916; F[7.13]=20.14; p<0.001);

PONPR = 21.23 + 0.065 x ZM_ZM - 2.258 x VSHIR_16 + 3.285 x VDEG_12 + 0.269 x SN_PRN - 1.452 x VSHIR_42 + 1.133 x VDEG_13 + 0.328 x ALROOT_13 (R²=0.875; F[7.13]=13.03; p<0.001);

BUGR13_23 = 34.88 + 0.221 x CHI_CHI - 1.113 x VSHIR_16 + 2.042 x TSHIR_41 - 1.043 x TSHIR_16 - 0.126 x AL_AL + 0.776 x MDDEG_12 (R²=0.863; F[8.14]=14.66; p<0.001);

APX13_23 = 70.79 + 0.247 x ALROOT_41 - 0.170 x AU_GN - 2.318 x L_43 + 1.708 x VLSROOT_43 + 1.289 x VSHIR_44 - 0.396 x VLROOT_11 (R²=0.887; F[7.14]=18.34; p<0.001);

BUGR33_43 = -45.96 + 0.989 x ALROOT_41 + 0.531 x G_OP + 2.485 x MDDEG_11 - 2.612 x MDDEG_42 - 0.441 x ZY_ZY + 0.135 x ZM_ZM (R²=0.877; F[8.14]=16.65; p<0.001);

APX33_43 = -6.424 - 11.69 x VSHIR_44 + 1.778 x VLROOT_12 + 8.914 x VDEG_42 + 0.541 x N_SN + 1.118 x L_11 - 2.856 x TSHIR_42 (R²=0.910; F[8.14]=23.50; p<0.001);

GL_1 = 45.93 - 3.260 x MDDEG_43 - 1.023 x ALROOT_11 + 2.489 x MDDEG_13 - 0.053 x DUGS_G_OP - 1.417 x VSHIR_15 + 1.260 x MDDEG_42 (R²=0.989; F[8.14]=20.66; p<0.001);

GL_2 = -5.588 + 3.548 x TSHIR_12 - 0.626 x STO_SPM + 0.348 x ZY_ZY - 0.320 x AU_SN + 0.629 x VLSROOT_11 - 1.221 x MDDEG_13 (R²=0.933; F[8.14]=32.54; p<0.001);

GL_3 = 2.837 + 0.429 x CHI_CHI + 1.792 x MDDEG_11 - 0.937 x VSHIR_13 - 0.263 x SN_PRN + 0.093 x G_OP - 0.148 x AU_SN (R²=0.906; F[8.14]=22.61; p<0.001),

where: AL_AL is the width of the base of the nose (distance between the alar points) (mm); ALROOT - root length of incisors and canines in mesio-distal direction (mm); AU_GN - distance from auricular point to chin (average) (mm); AU_GO is the distance from the auricular point to the angle of the mandible (average) (mm); AU_SN is the distance from the auricular point to the subnasum (averaged) (mm); CHI_CHI - width of mouth (mm); DUGS_G_OP - sagittal arch, measured by the strap from the right tragus point to the left (mm); DUGS_G_OP - sagittal arc, measured by the strap from the right tragus point to the opisthokranion (mm); GO_GO - width of mandible (width between corners of mandible) (mm); L is the distance from the middle of the cutting edge to the apex of the root of the tooth in the vestibulo-oral (vestibulo-lingual [4]) direction (mm); MDDEG is the width of the teeth at the level of the anatomical neck in the mesio-distal direction (mm); MF_MF - inter-orbital (anterior inter-orbital) width (straight distance between the inner corners of the eye pits) (mm); N_SN - nose height (distance between the upper nose and lower nose points) (mm); R is the coefficient of determination; SN_PRN - depth of nose (distance between sub-point and pronasion) (mm); STO_GN - height of lower face (distance from mouth to chin) (mm); STO_SPM - height of lower lip (distance from stomion to supramental) (mm); TR_GN - physiological length of face (distance from trichion to gnathion) (mm); TSHIR is the width of the crowns of the teeth in the vestibulo-oral (vestibulo-lingual [4]) direction (mm); VDEG is the width of the teeth at the level of the anatomical neck in the vestibulo-oral (vestibulo-lingual [4]) direction (mm); VDEG is the width of the teeth at the level of the anatomical neck in the vestibulo-oral (vestibulo-lingual [4]) direction (mm); VLROOT is the distance from the middle of the cutting edge to the apex of the root of the tooth in the vestibulo-oral (vestibulo-lingual [4]) direction (mm); VSHIR - width of crowns of teeth in mesio-distal direction (mm); ZM_ZM - average width of face (distance between zygomatic points) (mm); ZY_ZY - face width (distance between zygomatic points) (mm).

Discussion
Thus, of the 18 possible computed tomography sizes used to construct the correct dental arch shape, for young
Modeling by regression analysis of the transverse dimensions of the upper and lower jaws and sagittal...
dentition in the lower arch. Direct high correlation (r=0.68; p=0.000) was found between the basal length of the upper jaw (Co-A) and the length of the base of the mandible (Co-Gn) and also found a direct high correlation (r=0.74; p=0.000) between the maxillary position (SNS angle) and the mandibular baseline position (SNB angle). Direct moderate correlation (r=0.45; p=0.002) was found between the basal length of the upper dentition in the lower arch. Direct high correlation (r=0.74; p=0.000) was found between the maxillary incisors and the vertical face size and the anterior posterior jaw, measured by the ANB angle. Correlation between the location of the mandible incisor and the anterior posterior jaw, measured by the ANB angle was found. The inverse moderate correlation between the location of the maxillary incisors and the vertical face size measured by the angle MP and SN showed was found [18].

Thus, it can be concluded that regression analysis is a powerful tool that can serve the dental industry. Building models of dental arches, considering the type of patient’s face and gender, is the right key to improving dental care for the population.

Conclusions
In young women with a very wide type of face with normal occlusion close to orthognathic occlusion, all 18 possible (with a coefficient of determination from 0.863 to 0.962) reliable regression models of reproduction of the individual characteristics of the dental arches of the upper and lower jaws depending on the odonto- and cephalometric indicators were determined and analyzed.

References
моделювання за допомогою регресійного аналізу поперечних розмірів верхньої та нижньої щелеп і сагітальних характеристик зуboneї дуги у дівчат з дуже широким обличчям в залежності від особливостей одонт- та кефалометричних показників

Позуров Т.Л.

Надання максимальної індивідуальної ортодонтичної допомоги пацієнту неможливо без використання сучасних інструментальних методів дослідження та врахування одонтометричних і кефалометричних характеристик представників відповідної популяції різної статі та віку. Мета дослідження - розробити та провести аналіз регресійних моделей комп'ютерно-томографічних розмірів, необхідних для побудови коректної форми зубних дуг у дівчат із дуже широким обличчям в залежності від особливостей одонт- і кефалометричних показників. Перевірін комп'ютерно-томографічні показники розмірів зубів і кефалометричні параметри 50 дівчат з нормальною околюзією до ортогнатичного прикусу отримані з банку даних науково-дослідного центру Вінницького національного медичного університету ім. М.І. Пирогова. Тип обличчя визначали за допомогою морфологічного індексу Гарсона. Установлено наступну розподіл: з дуже широким обличчям - 21, з широким обличчям - 20, з середнім обличчям - 6, з вузьким обличчям - 3, з дуже вузьким обличчям - 0. Тому для подальшого моделювання були обрані лише дівчата з широким і дуже широким обличчям. Розробка регресійних моделей лінійних розмірів, необхідних для побудови коректної форми зубних дуг у залежності від особливостей одонт- і кефалометричних показників. Розраховані одонтометричні і кефалометричні показники розмірів зубів, використовуються для побудови коректної форми зубних дуг в залежності від особливостей одонтометричних і кефалометричних показників. До побудованих моделей у дівчат із дуже широким типом обличчя більш часто входять одонтометричні показники (73,0 %), ніж кефалометричні (27,0 %) показники. Серед одонтометричних показників до моделей найбільш часто входять: ширина коронок зубів у mezio-dистальному напрямку (20,7 %); ширина зубів на рівні анатомічної шийки у mezio-dистальному напрямку (14,4 %) та ширина коронок зубів у вестибуло-орально напрямку (10,8 %); а серед кефалометричних показників - найбільша довжина голови (3,6 %); середня ширина обличчя та висота шийки в мезіо-дістальному напрямку (9,8 %). Таким чином, у дівчат із дуже широким типом обличчя з нормальною околюзією побудовані усі 18 можливих достовірних моделей (з коефіцієнтами детермінації від 0,863 до 0,962) лінійних комп'ютерно-томографічних розмірів, що використовуються для побудови коректної форми зубних дуг в залежності від особливостей одонтометричних і кефалометричних показників. Ключові слова: регресійний аналіз, діагноз з ортогнатичним прикусом, дуже широкий тип обличчя, збільшення, одонтометричні та кефалометричні показники.

МОДЕЛЮВАННЯ С ПОМОЩЬЮ РЕГРЕСІЙНОГО АНАЛІЗУ ПОПЕРЕЧНИХ РОЗМІРІВ ВЕРХНЬОЇ ТА НИЖНЬОЇ ЧЕЛЮСТЕЙ І САГІТАЛЬНИХ ХАРАКТЕРИСТИК ЗУБНОЇ ДУГИ У ДІВУШКІ С ПОЧЕНИМ ШИРОКИМ ЛИЦІМ В ЗАВИСИМОСТІ ОТ ОСОБЕННОСТЕЙ ОДОНТО- ТА КЕФАЛОМЕТРИЧНИХ ПОКАЗНИКІВ

Позуров Т.Л.

Представлення вакансії індивідуальної ортодонтичної допомоги пацієнту неможливо без використання сучасних інструментальних методів дослідження та врахування одонтометричних та кефалометричних характеристики представників відповідної популяції різної статі та віку. Цель дослідження - розробити та провести аналіз регресійних моделей комп'ютерно-томографічних розмірів, необхідних для построения корректной формы зубных дуг у девушках с очень широким лицем в зависимости от особеностей одонт- и кефалометрических показателей. Первоначально компьютерно-томографические показатели размеров зубов и кефалометрические параметры 50 девушек с нормальной окклюзией приближенной к ортогнатическому прикусу получены из банка данных научно-исследовательского центра Вінницкого национального медичного університету им. М.І. Пирогова. Тип лица определяли с помощью морфологического индекса Гарсона. Установлено следующий распределение: с очень широким лицем - 21, с широким лицем - 20, со средним лицем - 6, с узким лицем - 3, с очень узким лицем - 0. Поэтому для дальнейшего моделирования были выбраны только девушки с широким и очень широким лицем. Разработки регрессивных моделей линейных размеров, необходимых для построения корректной формы зубных дуг в зависимости от особеностей одонт- и кефалометрических показателей у девушек с очень широким лицем проведена в лицензионном статистическом пакете "Statistica 6.0". Установлено, что в девушек с очень широким типом лица с нормальной окклюзией построены все 18 возможных достоверных моделей (с коэффicients детерминации от 0,863 до 0,962) линейных компьютерно-томографических размеров, используемых для построения корректной формы зубных дуг в зависимости от особенности одонт- и кефалометрических показателей.

Ключевые слова: регрессионный анализ, дверчата с ортогнатичным прикусом, очень широкий тип лица, одонтометрические и кефалометрические показатели.
нижней губы (по 2,7 %). Таким образом, у девушки с очень широким типом лица с нормальной окклюзией приближенной к ортогнатическому прикусу разработаны и проведен анализ всех 18 возможных достоверных регрессионных моделей воспроизводства индивидуальных характеристик зубных дуг верхней и нижней челюстей в зависимости от одонтометрических и кефалометрических показателей.

Ключевые слова: регрессионный анализ, девушки с ортогнатическом прикусом, очень широкий тип лица, зубная дуга, одонтометрические и кефалометрические показатели.