Endothelial dysfunction in pathogenesis of combined action of polymeric materials components


  • E.V. Tretyakova
  • L. M. Shafran
  • V.N. Pochtar
  • E.A. Potapov
Keywords: polymeric materials, toxicity, pathogenetic mechanisms, hypersensitivity delayed type, endothelial dysfunction.

Abstract

Polymeric materials over the past decades have become obligate components of the human environment and the means of restorative medicine. Levels of migration of components from polymeric materials by the degree of potential negative effects on the body can be attributed to low-intensity factors. The aim was to experimentally study the role of endothelial dysfunction and delayed type hypersensitivity in the pathogenesis of experimental toxicopathies caused by exposure to components of polymeric materials. The development of endothelial dysfunction was assessed by cytological and biochemical indices, allergic reaction - by general blood analysis, specific agglomeration of leukocytes and ratios of individual leukocyte populations. Studies have shown that the administration of the combination DBP+CdCl2 caused an increase in the immunological inflammation compared with the isolated administration, with the greatest effect on the endothelial system state indices - an increase in the number of desquamated endothelial cells, as well as an increase in endothelin-1 and ceruloplasmin in the blood in more than 1,17-1,19 times. The study of pathophysiological mechanisms of the development of endothelial dysfunction under the influence of various components of polymeric materials can give a new insight into the mechanisms of combined action of components of polymeric materials as low-intensity factors.

References

1. Alekseeva, O. G. & Dueva, L. A. (1978). Allergiya k promyshlennym himicheskim soedineniyam. Moskva. «Medicina». [in Russian].

2. Antomonov, M. Yu. (2006). Matematicheskaya obrabotka i analiz mediko-biologicheskih dannyh. Kiev. [in Russian].

3. Batyan, A., Frumin, G., & Bazylev, V. (2009). Osnovy obshej i ekologicheskoj toksikologii. S-Pb: «Spec. Lit.» [in Russian].

4. Gavrilenko, T. I., Lutaj, M. I. & Lomakovskij, A. N. (2010). Sostoyanie immunnogo vospaleniya i funkcii endoteliya u bolnyh ishemicheskoj boleznyu serdca so stabilnoj stenokardiej. Imunologiya ta alergologiya: nauka i praktika, 3-4, 96-102. [in Russian].

5. Golikov, P. P. (2004). Oksid azota v klinike neotlozhnyh zabolevanij. Moskva: «Medpraktika». [in Russian].

6. Grigorova, O. P. (1958). Rol monocitarnoj sistemy v reaktivnosti organizma. Moskva: «Medgiz». [in Russian].

7. Danilova, L. A. (2003). Spravochnik po laboratornym metodam issledovaniya. SPb.: «Piter». [in Russian].

8. Zajchik, A. Sh., & Churilov, L. P. (2001). Obshaya patofiziologiya. Tom 1. Obshaya nozologiya. (Uchebnik dlya VUZov). SPb.: ELBI-SPb. [in Russian].

9. Kryzhanovskij, G. N. (2002). Dizregulyacionnaya patologiya. Moskva. [in Russian].

10. Kurlyandskij, B. A., & Filov, V. A. (Red.). (2002). Obshaya toksikologiya. Moskva: Medicina. [in Russian].

11. Manuhina, E. B., & Malysheva I. Yu. (2003). Rol oksida azota v razvitii i preduprezhdenii disfunkcii endoteliya. Vestnik VGMU, 2 (2), 5-17. [in Russian].

12. Martynov A. I., Pinegin, B. V., & Yarilin, A. A. (2011). Ocenka immunologicheskogo statusa cheloveka v usloviyah vozdejstviya himicheskogo i biologicheskogo faktora. Moskva: «GEOTAR-Media». [in Russian].

13. Metodicheskie rekomendacii № 10-8/94. «Metody laboratornoj specificheskoj diagnostiki professionalnyh allergicheskih zabolevanij himicheskoj etiologii». Kiyiv. [in Russian].

14. Методичні рекомендації МР 8.1.4.104-2003. Дослідження імунотоксичної дії потенційно небезпечних хімічних речовин при їх гігієнічній регламентації. Київ. [in Ukrainian].

15. Paharenko, V. A., Yakovleva, R. A. & Paharenko, A. V. (Red.). (2006). Pererabotka polimernyh kompozicionnyh materialov. Kiyiv: Volya. [in Russian].

16. Trakhtenberh, I. M. (Red.). (2011). Profilaktychna toksykolohiia ta medychna ekolohiia. Kyiv: VD «Avitsena». [in Ukrainian].

17. Shafran, L. M. & Tretiakova, O. V. (2012). Doslidzhennia klitynnykh mekhanizmiv kombinovanoi dii osnovnykh komponentiv polimernykh materialiv u problemi bezpeky zhyttiediialnosti naselennia. Vestnyk hyhyenы y эpydemyolohyy, 16 (1), 42-47. [in Ukrainian].

18. Shafran, L. M., Potapov, Ye. A., & Leonova, D. I. (2014). Patent na vynakhid 106268 «Sposib vyiavlennia rannoho apoptozu». Derzhavnyi reiestr patentiv Ukrainy na vynakhody. [in Ukrainian].

19. Shafran, L. M., Saleh, E. N., Potapov, E. A., & Tretyakova, E. V. (2014). Kletochnye elementy disfunkcii endoteliya sosudov pri gestozah. Byulleten XIII chtenij im. V.V. Podvysockogo, 272-276. [in Russian].

20. Sheftel, V. O. (Red.). (1991). Vrednye veshestva v plastmassah. Moskva: «Himiya». [in Russian].

21. Abraham, D., & Distler, O. (2007). How does endothelial cell injury start? The role of endothelin in systemic sclerosis. Arthritis Research & Therapy, 9 (2), 2. (doi:10.1186/ar2186). Retrieved from http://arthritis-research.com/content/9/S2/S2.

22. Bodin, J., Kocbach, B. A., & Wendtet, А. (2015). Exposure to bisphenol A, but not phthalates, increases spontaneous diabetes type 1 development in NOD mice. Toxicol. Rep., 2 (2), 99-110.

23. Brandi, D., Freeman, L., & Fabiana, S. (2014). Endothelin-1 and its role in the pathogenesis of infectious diseases. Life Sci, 118 (2), 110-119.

24. Calabrese, E. (2012). Hormesis: improving predictions in the low-dose zone. EXS, 101, 551-564.

25. European convention for the protection of vertebrate animals used for experimental and other scientific purposes. (2009). Council of Europe. Strasbourg.

26. Gorini, F., Chiappa, E., Gargani, L., & Picano, E. (2014). Potential effects of environmental chemical contamination in congenital heart disease. Pediatric cardiology, 35 (4), 559-68.

27. Hladovec, J., Prerovsky, I., Stanek, V., & Fabian J. (1978). Circulating Endothelial Cells in Acute Myocardial Infarction and Angina Pectoris. Klinische Wochenschr., 56, 1033-1036.

28. Kawamura, Y., Mutsuga, M., Yamauchi, T., & Ueda, S, (2009 ). Tanamoto Migration tests of cadmium and lead from paint film of baby toys. Shokuhin Eiseigaku Zasshi, 50 (2), 93-96.

29. Krüger, T., Cao, Y., & Kjærgaard, S. (2012). Effects of phthalates on the human corneal endothelial cell line B4G12. Int. J. Toxicol., 31, 364-371.

30. Li, L., Li, H. S., Song, N. N., & Chen, H. M. (2013). The immunotoxicity of dibutyl phthalate on the macrophages in mice. Immunopharmacol. Immunotoxicol., 35 (2), 272-281.

31. Smith, K. R., Nation, J. R., & Bratton, G. R. (2002). The effects of developmental cadmium exposure on morphine sensitization and challenge with selective D (1) and D(2) antagonists. Pharmacol. Biochem. Behav., 72 (3). 581-590.

32. Stejskal, V. (2014). Metals as а common trigger of inflammation resulting in non-specific symptoms: diagnosis and treatment. Isr. Med. Assoc. J., 16 (12), 753-758.

33. Wu, B., Li, W., & Fu, Y. (2011). Study on effect of heavy metal cadmium ions on the ultramicrostructure damage of Pheretima aspergillum gastrointestinal epithelial cells. Zhong Yao Cai, 34 (12), 1833-1837.

34. Zuo, H., Li, J., & Han, B. (2014). Di-(n-butyl)-phthalate-induced oxidative stress and depression-like behavior in mice with or without ovalbumin immunization. Biomed Environ Sci, 27, 268-280.
Published
2017-10-27
How to Cite
Tretyakova, E., Shafran, L. M., Pochtar, V., & Potapov, E. (2017). Endothelial dysfunction in pathogenesis of combined action of polymeric materials components. Biomedical and Biosocial Anthropology, (29), 83-89. Retrieved from https://bba-journal.com/index.php/journal/article/view/291