Sonographic model parameters of kidney in men and women endo-mesomorphic somatotype depending on the anthropometric indices characteristics


  • O.S. Ustymenko Bogomolets National Medical University, Kyiv, Ukraine
Keywords: regression analysis, practically healthy men and women, sonographicparameters of the kidneys, anthropometry, endo-mesomorphic somatotype.

Abstract

The application of the mathematical method for establishing quantitative relationshipsbetween the set of anthropometric parameters and sonographic parameters of thepatient allows in some cases to significantly improve early diagnosis of diseases, makeit not only timely, but accurate. The purpose of the work is to analyze the regressionmodels of individual sonographic sizes of the kidneys in practically healthy men andwomen of the endo-mesomorphic somatotype, depending on the peculiarities of thestructure and size of the body. Sonographic renal research conducted using ultrasonicdiagnostic system "CAPASEE" SSA-220A (Toshiba, Japan). For each kidney, the length,width (transverse size) and front and rear dimensions were determined; the area of thelongitudinal and transverse sections of the kidneys and their sinuses, as well as thevolume of the right and left kidneys. All of them had an anthropometric survey conductedby V.V. Bunak in the modification of P. P. Shapаrenko. The evaluation of thesomatotype was carried out according to the mathematical scheme of J. Carter and B.Heath. Determining the absolute amount of fat, bone and muscle components of bodyweight was calculated by the formula J. Matiegka and the muscular component - bythe formulas of the American Institute of Nutrition. For the construction of models ofindividual sonographic parameters of the kidneys, the method of stepwise regressionanalysis in the package "STATISTICA 6.1" was used. In practically healthy men andwomen of Podillia endo-mesomorphic somatotype of 16 possible 14 reliable regressionmodels of sonographic parameters of the right and left kidneys, based on anthropo-somatotypological indicators with a determination coefficient, from 0.767 to 0.966 andfrom 0.672 to 0.912 were constructed. The constructed models of sonographicparameters of both kidneys in men endo-mesomorphic somatotype most often includethe circumferential body dimensions (22.4%), cephalometric indices and the thicknessof skin and fat folds (17.1%), body diameters (14.5%), and longitudinal body dimensions(11.8%). The constructed models of sonographic parameters of both kidneys in womenendo-mesomorphic somatotype most often include circumferential body sizes (23.1%),body diameters (20.5%), cephalometric indices (19.2%) and thickness of skin and fatfolds (16.7%). In the analysis of entering into models of sonographic parameters of thekidneys anthropometric and somatotypological indicators, expressed manifestations ofasymmetry and sexual dimorphism

References

[1] Bakker, H., Kooijman, M. N., van der Heijden, A. J., Hofman, A., Franco, O. H., Taal, H. R., & Jaddoe, V. W. (2014). Kidney size and function in a multi-ethnic population-based cohort of school-age children. Pediatr Nephrol., 29(9), 1589-1598. DOI: 10.1007/s00467-014-2793-8.

[2] Carter, J. L., & Heath, B. H. (1990). Somatotyping – development and applications. Cambridge University Press. ISSN 0957-0306.

[3] Chen, S., Wu, B., Liu, X., Chen, Y., Li, Y., Li, M., … Zou, H. (2013). Association of Anthropometric indexes with chronic kidney disease in a Chinese population. Clin Nephrol., 80(5), 361-369. DOI: 10.5414/CN108002.

[4] Cherkasov, V. G., & Ustymenko, О. S. (2017). Modeling using regression analysis of sonographic parameters of kidneys depending on the features of the size of practical healthy women with mesomorphic somatotype. World of Medicine and Biology, 3(61), 73-76. DOI: 10.26724/2079-8334-2017-3-61-73-76.

[5] Correas, J. M., Anglicheau, D., Joly, D., Gennisson, J. L., Tanter, M., & Hélénon, O. (2016). Ultrasound-based imaging methods of the kidney-recent developments. Kidney Int., 90(6), 1199-1210. DOI: 10.1016/j.kint.2016.06.042.

[6] Hyun, Y. Y., Lee, K. B., Rhee, E. J., Park, C. Y., Chang, Y., & Ryu, S. (2016). Chronic kidney disease and high eGFR according to body composition phenotype in adults with normal BMI. Nutr. Metab. Cardiovasc., 26(12), 1088-1095. DOI: 10.1016/j.numecd.2016.09.003.

[7] Johansen, K. L., & Lee, C. (2015). Body composition in chronic kidney disease. Curr. Opin. Nephrol. Hypertens., 24(3), 268-275. DOI: 10.1097/MNH.0000000000000120.

[8] Jaroszynski, A., Dereziński, T., Jaroszyńska, A., Zapolski, T., Wąsikowska, B., Wysokiński, A., … Horoch, A. (2016). Association of anthropometric measures of obesity and chronic kidney disease in elderly women. Ann. Agric. Environ. Med., 23(4), 636-640. DOI: https://doi.org/10.5604/12321966.1226859.

[9] Jovanović, D., Gasic, B., Pavlovic, S., & Naumovic, R. (2013). Correlation of kidney size with kidney function and anthropometric parameters in healthy subjects and patients with chronic kidney diseases. Ren Fail., 35(6), 896-900. DOI: 10.3109/0886022X.2013.794683.

[10] Kalloo, S. D., Mathew, R. O., & Asif, A. (2016). Is nephrology specialty at risk? Kidney Int., 90(1), 31-33. DOI: 10.1016/j.kint.2016.01.032.

[11] Niyyar, V. D.,& O’Neill W. С. (2018). Point-of-care ultrasound in the practice of nephrology. Kidney Int., 93(5), 1052-1059. DOI: 10.1016/j.kint.2017.11.032.

[12] Mackinnon, B., McKinlay, J., McQuarrie, E., & Geddes, C. (2010). Early ultrasound to detect complications after renal biopsy. Nephrol. Dial. Transplant., 25(1), 316-317. DOI: 10.1093/ndt/gfp540.

[13] Manley, J. A., & O'Neill, W. C. (2001). How echogenic is echogenic? Quantitative acoustics of the renal cortex. Am. J. Kidney Dis., 37(4), 706-711. PMID: 11273869.

[14] Matiegka, J. (1921). The testing of physical effeciecy. Amer. J. Phys. Antropol., 2(3), 25-38. https://doi.org/10.1002/ajpa.1330040302.

[15] O'Neill, W. C., Bardelli, M., & Yevzlin, A. S. (2011). Imaging for renovascular disease. Semin. Nephrol., 31(3), 272-282. DOI: 10.1016/j.semnephrol.2011.05.007.

[16] Pietrzak-Nowacka, M., Safranow, K., Palacz, J., Gołembiewska, E., Marchelek-Myśliwiec, M., & Ciechanowski, K. (2015). Association of kidney and cysts dimensions with anthropometric and biochemical parameters in patients with ADPKD. Ren Fail., 37(5), 798-803. DOI: 10.3109/0886022X.2015.1033608.

[17] Quaia, E, Nocentini, A, & Torelli L. (2009). Assessment of a new mathematical model for the computation of numerical parameters related to renal cortical blood flow and fractional blood volume by contrast-enhanced ultrasound. Ultrasound Med. Biol., 35(4), 616-627. DOI: 10.1016/j.ultrasmedbio.2008.10.003.

[18] Salsberg, E., Quigley, L., Masselink, L., Wu, X., & Collins, A. (2015). The US Nephrology Workforce 2015: Developments and Trends. American Society of Nephrology. https://www.asn-online.org.

[19] Shaparenko, P. P. (2000). Antropometriya. Vinny`cya: [w.p.].

[20] Shephard, R. J. (1991). Body composition in biological anthropology. Cambridge. ISBN-10: 0521362679.

[21] Ustymenko, О. S. (2017). Regression models of sonographic parameters of kidneys in men of mesomorphic somatotype in connection with the features of size of the body. Biomedical and biosocial anthropology, 28, 106-108.
Published
2018-03-29
How to Cite
Ustymenko, O. (2018). Sonographic model parameters of kidney in men and women endo-mesomorphic somatotype depending on the anthropometric indices characteristics. Biomedical and Biosocial Anthropology, (30), 43-49. https://doi.org/https://doi.org/10.31393/bba30-2018-06