Correlations between linear dimensions of the lumbar intervertebral discs and somatometric parameters in the youth (18-28 years) and young adult males in norm

  • V. P. Danylevych National Pirogov Memorial Medical University, Vinnytsya, Ukraine
  • Yu. Y. Guminskyi National Pirogov Memorial Medical University, Vinnytsya, Ukraine
  • V. O. Orlovskyi National Pirogov Memorial Medical University, Vinnytsya, Ukraine
  • L. V. Babych National Pirogov Memorial Medical University, Vinnytsya, Ukraine
Keywords: intervertebral discs, somatometric parameters, MRI, correlation coefficient.

Abstract

The research for new vertebro-somatometric correlations will significantly improve the possibilities of methods for individualizations of the normal parameters and will accelerate the introduction of scientific developments into the daily practice of clinicians, radiologists, neurosurgeons and other specialists. The aim of research is to investigate the peculiarities of relationships between partial linear dimensions of the lumbar intervertebral discs, their total sizes and relative indicators with somatometric parameters in the youth and young adult males in norm. The linear dimensions of the lumbar intervertebral discs (height, sagittal and transverse sizes) were measured noninvasively on the MRI images in the axial, sagittal and coronal plains. The somatometric investigation was performed individually with measuring of the general (length and weight of body) and particular sizes (the longitudinal sizes, the transverse sizes, the circumferences, pelvic sizes and skinfolds thickness). The bony, muscle and fat components of the body mass were calculated. Correlation analysis was performed in the «Statistica 6.1» license package. The arithmetic means of absolute correlation coefficients between particular and total individual sizes of IVDL1-L2, IVDL2-L3, IVDL3-L4, IVDL4-L5 and relative quantity with somatometric parameters were calculated with following results: arithmetic means of absolute correlation coefficients for particular individual sizes are within 0.080 – 0.150; for total sizes – 0.240; for ratio of the total sizes to the mass-growth coefficient – 0.490. Analysis of arithmetic mean values of absolute correlations with somatometric parameters in youth and young adult males in the norm (17-28 years) showed a gradual increase in the values of correlation coefficients and an increase in the number of significant correlations with maximum values in relative indicators. Thus, in youth and young adult males aged 18-28 years, the features of the relationship of somato-anthropometric parameters with the linear dimensions of the intervertebral discs of the lumbar spine in the norm were studied. The numerous relationships between the partial (height, sagittal and transverse sizes) linear dimensions and total sizes of the lumbar intervertebral discs in the youth and young adult males in norm (17-28 years) with their somatometric parameters were found. Thus, the use of relative indicators can be more acceptable in the subsequent mathematical modeling of individual indicators, in particular, the parameters of the intervertebral discs.

References

[1] Adams, M. A., Bogduk, N., Burton, K., & Dolan, P. (2012). The biomechanics of back pain (Vol. 55). Elsevier Health Sciences. ISBN: 9780702052910
[2] Apfel, C. C., Cakmakkaya, O. S., Martin, W., Richmond, C., Macario, A., George, E., … & Pergolizzi, J. V. (2010). Restoration of disk height through non-surgical spinal decompression is associated with decreased discogenic low back pain: a retrospective cohort study. BMC musculoskeletal disorders, 11(1), 155. doi: 10.1186/1471-2474-11-155
[3] Banik, S., & Rajkumari. A. (2019). Morphometric analysis of lumbar vertebrae and its applied clinical importance. Int J Anat Res, 7(2.1), 6381-6386. doi: 10.16965/ijar.2019.122
[4] Bunak, V. V. (1941). Anthropometry: a practical course. М.: Uchpedgiz.
[5] Burton, C. V. (2009). The History of Lumbar Spine Stabilization. The Burton Report. Available from: http://www.burtonreport.com
[6] Cardoso, M. J., Dmitriev, A. E., Helgeson, M., Lehman, R. A., Kuklo, T. R., & Rosner, M. K. (2008). Does superior-segment facet violation or laminectomy destabilize the adjacent level in lumbar transpedicular fixation?: аn in vitro human cadaveric assessment. Spine, 33(26), 2868-2873. doi: 10.1097/brs.0b013e31818c63d3
[7] Cassinelli, E. H., & Kang, J. D. (2000). Current understanding of lumbar disc degeneration. Operative Techniques in Orthopaedics, 10(4), 254-262. doi: 10.1016/s1048-6666(00)80025-7
[8] Chaddock, R. E. (1925). Principles and methods of statistics. (Houghton Mifflin Company; 1st edition). American Academy of Political and Social Science. doi: 10.1177/000271622612300150
[9] Chen, H., Jiang, D., Ou, Y., Zhong, J., & Lv, F. (2011). Geometry of thoracolumbar vertebral endplates of the human spine. European spine journal, 20(11), 1814-1820. doi: 10.1007/s00586-011-1787-5
[10] Fallah, F., Walter, S. S., Bamberg, F., & Yang, B. (2019). Simultaneous Volumetric Segmentation of Vertebral Bodies and Intervertebral Discs on Fat-Water MR Images. IEEE Journal of Biomedical and Health Informatics, 23(4), 1692-1701. doi: 10.1109/JBHI.2018.2872810
[11] Freeman, M. D., Woodham, M. A., & Woodham, A. W. (2010). The role of the lumbar multifidus in chronic low back pain: a review. PM & R: the journal of injury, function, and rehabilitation, 2(2), 142-167. doi: 10.1016/j.pmrj.2009.11.006
[12] Fyllos, A. H., Arvanitis, D. L., Karantanas, A. H., Varitimidis, S. E., Hantes, M., & Zibis, A. H. (2018). Magnetic resonance morphometry of the adult normal lumbar intervertebral space. Surgical and radiologic anatomy : SRA, 40(9), 1055-1061. doi: 10.1007/s00276-018-2048-7
[13] Guminsky, Y. Y. (2001). Proportionality in somato-visceral interrelations humans’ body in norm. Reports of Morphology, 3(2), 319-323.
[14] Hansen, B., Bendix, T., Grindsted, J., Bliddal, H., Christensen, R., Hansen, Ph., ... & Boesen, M. (2015). Effect of Lumbar Disc Degeneration and Low-Back Pain on the Lumbar Lordosis in Supine and Standing. Spine, 21(40), 1690-1696. doi: 10.1097/BRS.0000000000001120
[15] Hong, C. H., Park, J. S., Jung, K. J., & Kim, W. J. (2010). Measurement of the normal lumbar intervertebral disc space using magnetic resonance imaging. Asian spine journal, 4(1), 1-6. doi: 10.4184/asj.2010.4.1.1
[16] Hwang, D., Kim, S., & Abeydeera, N. A. (2016). Quantitative magnetic resonance imaging of the lumbar intervertebral discs. Quant Imaging Med Surg, 6(6), 744-755. doi: 10.21037/qims.2016.12.09
[17] Lee, J. C., Cha, J. G., Kim, Y., Kim, Y. I., & Shin, B. J. (2008). Quantitative analysis of back muscle degeneration in the patients with the degenerative lumbar flat back using a digital image analysis: comparison with the normal controls. Spine, 33(3), 318-325. doi: 10.1097/BRS.0b013e318162458f
[18] Lee, K., Shin, J. S., Lee, J., Lee, Y. J., Kim, M. R., … & Park, K. B. (2017). Lumbar intervertebral disc space height in disc herniation and degeneration patients aged 20 to 25. Int J Clin Exp Med, 10(4), 6828-6836.
[19] Luoma, K., Riihimäki, H., Luukkonen, R., Raininko, R., Viikari-Juntura, E., & Lamminen, A. (2000). Low pain in relation to lumbar disc degeneration. Spine (Phila Pa 1976), 25(4), 487-492. doi: 10.1097/00007632-200002150-00016
[20] Maeda, T., Hashizume, H., & Yoshimura, N. (2018). Factors associated with lumbar spinal stenosis in a large-scale, population-based cohort: The Wakayama Spine Study. PLoS One, 13(7), e0200208. doi: 10.1371/journal.pone.0200208
[21] Matiegka, J. (1921). The testing of physical effeciecy. Am. J. Phys. Antropol, 2(3), 25-38. doi: 10.1002/ajpa.1330040302
[22] Mengiardi, B., Schmid, M. R., Boos, N., Pfirrmann, C. W., Brunner, F., Elfering, A., & Hodler, J. (2006). Fat content of lumbar paraspinal muscles in patients with chronic low back pain and in asymptomatic volunteers: quantification with MR spectroscopy. Radiology, 240(3), 786-792. doi: 10.1148/radiol.2403050820
[23] Mirab, S. M. H., Barbarestani, M., Tabatabaei, S. M., Shahsavari, S., & Minaeii Zangi, M. B. (2017) Measuring Dimensions of Lumbar Intervertebral Discs in Normal Subjects. ASJ, 14(1), 3-8. http://anatomyjournal.ir/article-1-197-en.html
[24] Niemeyer, F., Wilke, H. J., & Schmidt, H. (2012). Geometry strongly influences the response of numerical models of the lumbar spine – a probabilistic finite element analysis. J Biomech, 45(8), 1414-1423. doi: 10.1016/j.jbiomech.2012.02.021
[25] Parker, S. L., Godil, S. S., Mendenhall, S. K., Zuckerman, S. L., Shau, D. N., & McGirt, M. J. (2014). Two-year comprehensive medical management of degenerative lumbar spine disease (lumbar spondylolisthesis, stenosis, or disc herniation): a value analysis of cost, pain, disability, and quality of life. Journal of Neurosurgery: Spine SPI, 21(2), 143-149. doi: 10.3171/2014.3.SPINE1320
[26] Paul, C. P. L., Emanuel, K. S., Kingma, I., van der Veen, A. J., Holewijn R. M., Vergroesen, P. A., … & Smit, T. H. (2018) Changes in Intervertebral Disk Mechanical Behavior During Early Degeneration. J Biomech Eng, 140(9). doi: 10.1115/1.4039890
[27] Paul, C., Smit, T. H., de Graaf, M., Holewijn, R. M., Bisschop, A., van de Ven, P., … & Strijkers, G. J. (2018). Quantitative MRI in early intervertebral disc degeneration: T1rho correlates better than T2 and ADC with biomechanics, histology and matrix content. PloS One, 13(1), e0191442. doi: 10.1371/journal.pone.0191442
[28] Pinchuk, S. V., & Gunas, I. V. (2015). Links of computed tomography sizes lumbar spine in the median-sagittal sections with anthropo-somatotypological parameters of healthy young boy’s mesomorph and endo-mesomorph girls. Journal of Education, Health and Sport, 5(8), 177-186. doi: 10.5281/zenodo.28060
[29] Pye, S. R., Smith, R., Reid, D. M., Adams, J., Nelson, K., & Silman, A. J. (2004). O'Neill T W. Radiographic features of lumbar disc degeneration and self-reported back pain. The journal of Rheumatology, 31(4), 753-758.
[30] Santiago, F. R., Milena, G. L., Herrera, R. O., Romero, P. A., & Plazas, P. G. (2001). Morphometry of the lower lumbar vertebrae in patients with and without low back pain. European spine journal, 10(3), 228-233. doi: 10.1007/s005860100267
[31] Sebo, P., Haller, D., Pechère-Bertschi, A., Bovier, P., & Herrmann, F. (2015). Accuracy of doctors’ anthropometric measurements in general practice. Swiss Med Wkly, (145), w14115. doi: 10.4414/smw.2015.14115
[32] Shephard, R. J. (2005). Body composition in biological anthropology. Cambridge University Press, Cambridge, UK; New York. https://www.nhbs.com/body-composition-in-biological-anthropology-book
[33] Sireesha, K. B., & Abhilash, P. (2019). Radiographic Evaluation of Lumbo Sacral Spine in Chronic Low Back a patients. JMSCR, 10(7), 551-554. doi: 10.18535/jmscr/v7i10.93
[34] Tang, R., Gungor, C., Sesek, R. F., Foreman, K. B., Gallagher, S., & Davis, G. A. (2016). Morphometry of the lower lumbar intervertebral discs and endplates: comparative analyses of new MRI data with previous findings. Eur Spine J, 25(12), 4116-4131. doi: 10.1007/s00586-016-4405-8
[35] Zheng, G., Chu, C., & Belavý, D. L. (2017). Evaluation and comparison of 3D intervertebral disc localization and segmentation methods for 3D T2 MR data: a grand challenge. Med Image Anal, 35, 327-344. doi: 10.1016/j.media.2016.08.005
Published
2019-12-26
How to Cite
Danylevych, V. P., Guminskyi, Y. Y., Orlovskyi, V. O., & Babych, L. V. (2019). Correlations between linear dimensions of the lumbar intervertebral discs and somatometric parameters in the youth (18-28 years) and young adult males in norm. Biomedical and Biosocial Anthropology, (37), 15-21. https://doi.org/10.31393/bba37-2019-03