Structural changes in skeletal muscles of the hind limbs of rats in acute ischemia-reperfusion and its correction by carbacetam, detected by polarization microscopy

  • T. O. Veresiuk I. Horbachevsky Ternopil National Medical University PHC of Ukraine, Ternopil, Ukraine
  • P. R. Selskyy I. Horbachevsky Ternopil National Medical University PHC of Ukraine, Ternopil, Ukraine
  • A. T. Televiak I. Horbachevsky Ternopil National Medical University PHC of Ukraine, Ternopil, Ukraine
Keywords: acute ischemia, reperfusion, skeletal muscles, polarization microscopy, arterial tourniquet, carbacetam.

Abstract

Arterial tourniquets are used in clinical practice for angioplasty and arthroplasty, and in case of limb injuries, their use often occurs according to vital signs. After removing the tourniquet and blood supply restoration to the limb arises a multifactorial lesion of tissues both ischemic and distant from the site of ischemia. A number of publications have been devoted to the study of morphological disorders in muscle tissue in acute ischemia-reperfusion in the medical literature. However, the researches for effective means for drug correction of these disorders still continues. The aim of the study was to explore peculiarities of skeletal muscle remodeling of the hind limbs of rats, detected by polarization microscopy, in acute ischemia-reperfusion, caused by the application of an arterial tourniquet, and in the correction of reperfusion disorders by carbacetam. Microscopic examination of histological sections of skeletal muscles of the hind limbs of 60 rats below the site of application of the tourniquet under conditions of experimental acute ischemia-reperfusion was performed. Acute ischemia for all animals was caused by application of SWAT rubber bands on the hind limbs of animals, 5–6 mm in width, at the inguinal fold level within 2 hours under thiopental anesthesia. A reperfusion was modeled by removing the tourniquet. Half of the experimental animals in the reperfusion period for the purpose of correction intraperitoneally was administered the nootropic drug 1-oxo-3.3.6-trimethyl-1.2.3.4-tetrahydroindolo[2.3-c]quinoline (carbacetam) at a dose of 5 mg per kilogram of body weight once a day during the entire reperfusion period. The histological specimens of the skeletal muscles were stained with hematoxylin and eosin, and were examined with a light microscope with polarization nozzle. Studies with using the polarization microscopy have shown that in the early reperfusion period morphological criteria for skeletal muscle remodeling expressed by deformation and anisotropy of muscle fibers, disappearance of their transverse striation, cracks and ruptures of fibers, and in the most severe cases there were signs of necrosis of the fibers with their fragmentation into separate lumps. Subject to the correction of reperfusion disorders by carbacetam, there is a decrease in the degree of damage and consistent acceleration of restoration of the skeletal muscles structure, which was the most pronounced in groups of animals with reperfusion terms after 1 and 14 days. Complex of features indicates, that at the tissue level the administration of carbacetam as reduces the ischemic-reperfusion lesion of the muscular fibers, as also accelerates the mechanisms of reparative rhabdomyohistogenesis. Thus, structural changes in the skeletal muscles of the limb after two-hour ischemia and subsequent reperfusion increased in the early reperfusion period and reached its peak after 1 day of reperfusion, and in the late period of reperfusion their reverse development took place. With the correction of disorders by carbacetam, the degree of damage was reduced and the recovery of the skeletal muscle structure of the limb was accelerated.

Downloads

Download data is not yet available.

References

[1] Bokeriia, L. А., Pokrovskii, А. V., Sokurenko, G. Yu., Samorodskaia, I. V., Abugov, S. А., & Alekian, B. G. (2013). Национальные рекомендации по ведению пациентов с заболеваниями брахиоцефальных артерий [National guidelines for the management of patients with diseases of the brachiocephalic arteries]. Ангиология и сосудистая хирургия – Angiology and Vascular Surgery, 2, 1-70.
[2] Cellarius, Yu. G., Semenova, L. A., & Nepomnyashchikh, L. M. (1980). Морфологические типы изменений миофибрилл мышечных клеток сердца [Morphological types of changes in myofibrils of heart muscle cells]. Архив патологии – Archive of pathology, 12, 3-13.
[3] Dick, F., Li, J., Giraud, M. N., Kalka, C., Schmidli, J., & Tevaearai, H. (2008). Basic control of reperfusion effectively protects against reperfusion injury in a realistic rodent model of acute limb ischemia. Circulation, 118(19), 1920-1928. doi: 10.1161/CIRCULATIONAHA.108.787754
[4] Dunn, J. C., Kusnezov, N., Schoenfeld, A. J., Orr, J. D., Cook, P. J., & Belmont Jr, P. J. (2016). Vascular injuries in combat-specific soldiers during operation Iraqi freedom and operation enduring freedom. Annals of vascular surgery, 35, 30-37. doi: 10.1016/j.avsg.2016.01.040
[5] Gamzin, S. S., Alekseeva, L. V., & Lapina, G. P. (2015). Методологические аспекты биохимического и фармакологического анализа влияния ноотропов на пептидергическую систему и метаболизм в целом [Methodological aspects of biochemical and pharmacological analysis of the effect of nootropics on the peptidergic system and metabolism in general]. Вестник Тверского государственного университета. Серия: Биология и экология – Bulletin of Tver State University. Series: Biology and Ecology, (3), 40-52.
[6] Grinev, М. V., & Grinev, К. М. (2010). Цитокин-ассоциированные нарушения микроциркуляции (ишемически-реперфузионный синдром) в генезе критических состояний [Cytokine-associated microcirculation disorders (ischemia-reperfusion syndrome) in the genesis of critical conditions]. Хирургия. Журнал им. НИ Пирогова – Surgery. Journal named after NI Pirogov, (12), 70-76.
[7] Gubka, V. А. (2012). Хирургическое лечение осложнений операций у больных облитерирующим атеросклерозом аорты и артерий нижних конечностей [Surgical treatment of complications of operations in patients with obliterating atherosclerosis of the aorta and arteries of the lower extremities]. Патологія – Pathology, (1), 89-91.
[8] Howell, N. J., & Tennant, D. A. (2014). The role of HIFs in ischemia-reperfusion injury. Hypoxia, 2, 107-111. doi: 10.2147/ HP.S49720
[9] Jawhar, A., Hermanns, S., Ponelies, N., Obertacke, U., & Roehl, H. (2016). Tourniquet-induced ischaemia during total knee arthroplasty results in higher proteolytic activities within vastus medialis cells: a randomized clinical trial. Knee Surgery, Sports Traumatology, Arthroscopy, 24(10), 3313-3321. doi: 10.1007/s00167-015-3859-2
[10] Jiang, F. Z., Zhong, H. M., Hong, Y. C., & Zhao, G. F. (2015). Use of a tourniquet in total knee arthroplasty: a systematic review and meta-analysis of randomized controlled trials. Journal of Orthopaedic Science, 20(1), 110-123. doi: 10.1007/s00776-014-0664-6
[11] Kozak, D. V. (2014). Вплив карбацетаму на антиоксидантно-прооксидантний баланс тканини серця, легень і печінки в динаміці полі травми [Effect of carbacetam on antioxidant and prooxidant balance of heart, lungs and liver tissues in polytrauma dynamics]. Шпитальна хірургія – Hospit surgery, 1, 40-42.
[12] Kozak, D. V. (2015). Динаміка синдрому ендогенної інтоксикації в умовах політравми та його корекція карбацетамом [Dynamics of endogenous intoxication syndrome in conditions of polytrauma and its correction by carbacetam]. Здобутки клінічної і експериментальної медицини – Achievements of clinical and experimental medicine, (2-3), 58-60.
[13] Kragh, J. F., Murphy, C., Dubick, M. A., Baer, D. G., Johnson, J., & Blackbourne, L. H. (2011). New tourniquet device concepts for battlefield hemorrhage control. US Army Medical Department Journal, 38-48.
[14] Kutepov, D. E., Zhigalova, M. S., & Pasechnik, I. N. (2018). Pathogenesis of ischemia/reperfusion syndrome. Kazan medical journal, 99(4), 640-644. doi: 10.17816/KMJ2018-640
[15] Likhvantsev, V. V., Grebenchikov, О. А., Shmeleva, Е. А., & Skripkin, Yu. V. (2013). Анестетическое прекондиционирование: почему данные, полученные в эксперименте, не всегда подтверждаются в клинике? [Anesthetic preconditioning: why is experimental data not always confirmed in the clinic?]. Вестник анестезиологии и реаниматологии – Bulletin of Anesthesiology and Reanimatology, 10(4), 9-14.
[16] Malchenko, О. А., Kubyshkin, А. V., Anisimova, L. V., Shalanin, V. V., & Mandrik, Yu. V. (2012). Изменения в мышечной ткани задней конечности крыс в разные сроки формирования синдрома ишемии-реперфузии [Changes in the muscle tissue of the hind limb of rats at different times of the formation of ischemia-reperfusion syndrome]. Таврический медико-биологический вестник – Taurian medical and biological bulletin, 15(3,1(59)), 207- 210.
[17] Nepomnyashchikh, L. M. (1996). Основные формы острых повреждений кардиомиоцитов по данным поляризационной микроскопии миофибрилл [The main forms of acute cardiomyocyte damage according to polarization microscopy of myofibrils]. Бюллетень экспериментальной биологии и медицины – Bull. of exper. Biol. and Med., 1, 4-13.
[18] Nepomnyashchikh, L. M., & Bakarev, M. A. (2005). Морфогенез метаболических повреждений скелетных мышц [Morphogenesis of Skeletal Muscle Metabolic Damage]. М.: Изд-во РАМН – М.: Publ. House RAMN.
[19] Sarkisov, D. S., Palcev, M. A., & Khitrov, N. K. (1997). Общая патология человека [General human pathology]. М.: Медицина – Moscow: Medicine.
[20] Stapodubska, О. О. (2017). Ефективність викоpистання каpбацетаму для відновлення когнітивних поpушень пpи експеpиментальній чеpепно-мозковій тpавмі [The effectiveness of the use of cabacetam for the recovery of cognitive impairment in experimental traumatic brain injury]. Укpаїнська медична стоматологічна академія – Ukrainian Medical Dental Academy, 17(2(58)), 50-54.
[21] Stapodubska, О. О. (2017). Ступінь неврологічного дефіциту при черепно-мозковій травмі та його корекція [The degree of neurological deficit in traumatic brain injury and its correction]. Актуальні проблеми транспортної медицини: навколишнє середовище; професійне здоров’я; патологія – Current problems of transport medicine: environment; occupational health; pathology, (1), 143-148.
[22] Voloshin, А. N., Suzdalenko, А. V., & Baranetskii, V. V. (2011). Реконструктивные операции при тромбозах бедренно-подколенного сегмента [Reconstructive surgery for thrombosis of the femoral-popliteal segment]. Запорожский медицинский журнал – Zaporozhye Medical Journal, 13(4), 95-97.
[23] Walters, T. J., Garg, K., & Corona, B. T. (2015). Activity attenuates skeletal muscle fiber damage after ischemia and reperfusion. Muscle & nerve, 52(4), 640-648. doi: 10.1002/mus.24581
[24] Wang, X. T., Tian, Y., Xu, W. X., Cui, L. H., Xiang, S. Y., & Lü, S. C. (2015). Protective effects of modeled superoxide dismutase coordination compound (MSODa) against ischemia/reperfusion injury in rat skeletal muscle. Cellular Physiology and Biochemistry, 37(2), 465-476. doi: 10.1159/000430369
[25] Ziablytsev, S. V., Panova, T. I., Starodubska, O. O., & Dyadik, O. O. (2018). Експериментальне дослідження впливу карбацетаму на стан тканин гіпоталамусу при черепно-мозковій травмі [Experimental investigation of carbacetam influence on hypothalamus tissue in brain injury]. Медична наука України – Journal Medical Science of Ukraine (NMU), 14(1-2), 11-17. doi: 10.32345/1998-3719.1-2.2018.02
Published
2020-09-30
How to Cite
Veresiuk, T. O., Selskyy, P. R., & Televiak, A. T. (2020). Structural changes in skeletal muscles of the hind limbs of rats in acute ischemia-reperfusion and its correction by carbacetam, detected by polarization microscopy. Biomedical and Biosocial Anthropology, (38), 30-35. https://doi.org/10.31393/bba38-2020-05