Fractal dimension of the cortex and white matter of human cerebellum (magnetic resonance imaging study)

  • N. I. Maryenko Kharkiv National Medical University, Kharkiv, Ukraine
  • O. Yu. Stepanenko Kharkiv National Medical University, Kharkiv, Ukraine
Keywords: fractal analysis, fractal dimension, pixel dilation, cerebellum, magnetic resonance imaging.


The cerebellum is a typical structure with fractal properties, so fractal analysis is one of the main morphometric techniques that allow a comprehensive assessment of its morphofunctional state; the development of methods for differential measurement of the fractal dimension of various components of cerebellar tissue is necessary for complex morphological examination of the cerebellum using fractal analysis. The aim of the study was to develop an algorithm for differential fractal analysis and to determine the values of the fractal dimension of the cortex and white matter of human cerebellum using the study of magnetic resonance imaging scans. Digital T2 weighted magnetic resonance imaging scans of 30 conditionally healthy persons were used in the study. Fractal analysis of the distinct components of the cerebellar tissue was performed using the pixel dilation method. The fractal dimension values for all threshold brightness values (from 0 to 255) were determined. The confidence interval of the fractal dimension values based on the average values of the fractal dimension of the entire range of brightness values was calculated. Algorithms for image preprocessing were developed for an individual study of the different components of the cerebellum: cerebellar tissue as a whole, white matter, molecular and granular layers of the cortex. A differential fractal analysis technique has been developed to assess individual components of the cerebellar tissue. The values of the fractal dimension of white matter, granular and molecular layers of the cerebellar cortex were determined. The values of the fractal dimension of cerebellar tissue as a whole and the fractal dimension of the cerebellar cortex as a whole were the biggest. These values exceed the value of the fractal dimension of white matter. The average value of the fractal dimension (FD) for the threshold value of 80 (white matter) was 1.318±0.050, for the value of 90 (white matter and the granular layer of the cortex) was 1.568±0.028, for the value of 100 (cerebellar tissue as a whole) was 1.694±0.010. The average FD of the granular layer of the cortex (brightness range 81-90) was 1.377±0.020, the FD of the molecular layer of the cortex (brightness range 91-100) was 1.353±0.020, the average FD of the cerebellar cortex as a whole (brightness range 81-100) was 1.564±0.018. The obtained data can be used as diagnosis criteria to assess the morphofunctional state of the cerebellum using magnetic resonance imaging.


[1] Akar, E., Kara, S., Akdemir, H., & Kırış, A. (2015). Fractal dimension analysis of cerebellum in Chiari Malformation type I. Computers in biology and medicine, 64, 179-186. doi: 10.1016/j.compbiomed.2015.06.024
[2] Akar, E., Kara, S., Akdemir, H., & Kırış, A. (2017). 3D structural complexity analysis of cerebellum in Chiari malformation type I. Medical & biological engineering & computing, 55(12), 2169-2182. doi: 10.1007/s11517-017-1661-7
[3] D'Mello, A. M., Crocetti, D., Mostofsky, S. H., & Stoodley, C. J. (2015). Cerebellar gray matter and lobular volumes correlate with core autism symptoms. NeuroImage. Clinical, 7, 631-639. doi: 10.1016/j.nicl.2015.02.007
[4] Hill, S. Y., Wang, S., Carter, H., Tessner, K., Holmes, B., McDermott, M., Zezza, N., & Stiffler, S. (2011). Cerebellum volume in high-risk offspring from multiplex alcohol dependence families: association with allelic variation in GABRA2 and BDNF. Psychiatry research, 194(3), 304-313. doi: 10.1016/j.pscychresns.2011.05.006
[5] Johnson, C. P., Christensen, G. E., Fiedorowicz, J. G., Mani, M., Shaffer, J. J. Jr., Magnotta, V. A., & Wemmie, J. A. (2018). Alterations of the cerebellum and basal ganglia in bipolar disorder mood states detected by quantitative T1ρ mapping. Bipolar disorders, 20(4), 381-390. doi: 10.1111/bdi.12581
[6] Liu, J. Z., Zhang, L. D., & Yue, G. H. (2003). Fractal dimension in human cerebellum measured by magnetic resonance imaging. Biophysical journal, 85(6), 4041-4046. doi: 10.1016/S0006-3495(03)74817-6
[7] Maryenko, N. I., Stepanenko, O. Yu. (2019). Фрактальний аналіз як морфометричний метод в морфології: спосіб дилатації пікселів при дослідженні цифрових зображень анатомічних структур [Fractal analysis as a morphometric method in morphology: a pixel dilatation technique in the study of digital images of anatomical structures]. Український журнал медицини, біології та спорту – Medicine today and tomorrow, 1(82), 8-14. doi: 10.35339/msz.2019.82.01.02
[8] Maryenko, N. I. (2020). Кластерний аналіз фрактальної розмірності мозочка людини [Cluster Analysis of Human Cerebellum Fractal Dimension]. Медицина сьогодні і завтра – Ukr. ž. med. bìol. sportu, 5(5), 66-72. doi: 10.26693/jmbs05.05.066
[9] Montes, L. G., Ricardo-Garcell, J., De la Torre, L. B., Alcántara, H. P., García, R. B., Acosta, D. A., & Bouzas, A. F. (2011). Cerebellar gray matter density in females with ADHD combined type: a cross-sectional voxel-based morphometry study. Journal of attention disorders, 15(5), 368-381. doi: 10.1177/1087054710366421
[10] Park, M. T., Pipitone, J., Baer, L. H., Winterburn, J. L., Shah, Y., Chavez, S., … & Chakravarty, M. M. (2014). Derivation of high-resolution MRI atlases of the human cerebellum at 3T and segmentation using multiple automatically generated templates. NeuroImage, 95, 217-231. doi: 10.1016/j.neuroimage.2014.03.037
[11] Riva, D., Annunziata, S., Contarino, V., Erbetta, A., Aquino, D., & Bulgheroni, S. (2013). Gray matter reduction in the vermis and CRUS-II is associated with social and interaction deficits in low-functioning children with autistic spectrum disorders: a VBM-DARTEL Study. Cerebellum (London, England), 12(5), 676-685. doi: 10.1007/s12311-013-0469-8
[12] Spulber, G., Niskanen, E., Macdonald, S., Kivipelto, M., Padilla, D. F., Julkunen, V., … & Soininen, H. (2012). Evolution of global and local grey matter atrophy on serial MRI scans during the progression from MCI to AD. Current Alzheimer research, 9(4), 516-524. doi: 10.2174/156720512800492486
[13] Stoodley C. J. (2014). Distinct regions of the cerebellum show gray matter decreases in autism, ADHD, and developmental dyslexia. Frontiers in systems neuroscience, 8, 92. doi: 10.3389/fnsys.2014.00092
[14] van Baarsen, K. M., Kleinnijenhuis, M., Jbabdi, S., Sotiropoulos, S. N., Grotenhuis, J. A., & van Cappellen van Walsum, A. M. (2016). A probabilistic atlas of the cerebellar white matter. NeuroImage, 124(Pt A), 724-732. doi: 10.1016/j.neuroimage.2015.09.014
[15] Wang, J., Zhou, L., Cui, C., Liu, Z., & Lu, J. (2017). Gray matter morphological anomalies in the cerebellar vermis in first-episode schizophrenia patients with cognitive deficits. BMC psychiatry, 17(1), 374. doi: 10.1186/s12888-017-1543-4
[16] Weier, K., Fonov, V., Lavoie, K., Doyon, J., & Collins, D. L. (2014). Rapid automatic segmentation of the human cerebellum and its lobules (RASCAL)--implementation and application of the patch-based label-fusion technique with a template library to segment the human cerebellum. Human brain mapping, 35(10), 5026-5039. doi: 10.1002/hbm.22529
[17] Wu, Y. T., Shyu, K. K., Jao, C. W., Wang, Z. Y., Soong, B. W., Wu, H. M., & Wang, P. S. (2010). Fractal dimension analysis for quantifying cerebellar morphological change of multiple system atrophy of the cerebellar type (MSA-C). NeuroImage, 49(1), 539-551. doi: 10.1016/j.neuroimage.2009.07.042
[18] Yang, Z., Ye, C., Bogovic, J. A., Carass, A., Jedynak, B. M., Ying, S. H., & Prince, J. L. (2016). Automated cerebellar lobule segmentation with application to cerebellar structural analysis in cerebellar disease. NeuroImage, 127, 435-444. doi: 10.1016/j.neuroimage.2015.09.032
How to Cite
Maryenko, N. I., & Stepanenko, O. Y. (2020). Fractal dimension of the cortex and white matter of human cerebellum (magnetic resonance imaging study). Biomedical and Biosocial Anthropology, (38), 69-74.