The study of antimicrobial properties of film materials based on biopolymers and antiseptics

  • A. A. Nazarchuk National Pirogov Memorial Medical University, Vinnytsya, Ukraine
  • T. V. Denisko Odesa National Medical University, Odesa, Ukraine
  • N. I. Voloshchuk National Pirogov Memorial Medical University, Vinnytsya, Ukraine
  • H. H. Nazarchuk National Pirogov Memorial Medical University, Vinnytsya, Ukraine
Keywords: antimicrobial biomaterials, decamethoxin, calcium alginate, antibiotic resistance.

Abstract

The development of new biomaterials with improved properties is becoming increasingly important in a wide range of applications. However, some of the most sought-after properties are anti-microbial properties, which can help prevent unwanted wound infections, especially in the face of growing antibiotic resistance of bacteria. The aim of the study was to study the effect of antimicrobial biomaterials based on calcium alginate, as a polymer system of local prolonged delivery of quaternary ammonium compounds, on reference and clinical strains of microorganisms. Samples of antimicrobial biomaterials contained decamethoxin (0.03-0.07 wt%), and polymers (polyvinyl alcohol and calcium alginate). Reference and clinical strains of Staphylococcus aureus, Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa were used for the study. The sensitivity of strains of microorganisms was determined by the disk-diffusion method according to the generally accepted method. The result of antimicrobial activity was assessed after 24 hours. The mean (M), the mean error of the mean (± m), and the criterion for the significance of differences (p) were calculated. The presence of differences between the research data was assessed by the Student's t-criterion. The results were considered reliable at p<0.05. High antimicrobial properties of the studied samples of antimicrobial biomaterials based on calcium alginate and decamethoxin have been established. It was revealed that the samples of polymeric biomaterials have a higher activity against gram-positive microorganisms compared to gram-negative strains. The composition is not inferior to the antimicrobial effect of a solution of decamethoxin and chlorhexidine in relation to all strains of microorganisms.

References

[1] Aramwit, P. (2016). Introduction to biomaterials for wound healing. In Wound healing biomaterials (pp. 3-38). Woodhead Publishing. doi: 10.1016/B978-1-78242-456-7.00001-5
[2] Bienek, D. R., Tutak, W., & Skrtic, D. (2017). Bioactive polymeric materials for tissue repair. Journal of functional biomaterials, 8(1), 4. doi: 10.3390/jfb8010004
[3] Boateng, J., & Catanzano, O. (2015). Advanced therapeutic dressings for effective wound healing – a review. Journal of pharmaceutical sciences, 104(11), 3653-3680. doi: 10.1002/jps.24610
[4] Custodio, H. T., & Steele, R. W. (2017). Hospital-Acquired Infections: Practice Essentials, Background, Pathophysiology [Internet]. emedicine. medscape. com. 2017 [cited 3 August 2017]. PMID: 28722887
[5] Fenton, O. S., Olafson, K. N., Pillai, P. S., Mitchell, M. J., & Langer, R. (2018). Advances in biomaterials for drug delivery. Advanced Materials, 30(29), 1705328. doi: 10.1002/adma.201705328
[6] Finnegan, S., & Percival, S. L. (2015). EDTA: an antimicrobial and antibiofilm agent for use in wound care. Advances in wound care, 4(7), 415-421. doi: 10.1089/wound.2014.0577
[7] Grigorieva, M. V. (2011). Полимерные системы с контролируемым высвобождением биологически активных соединений [Polymer systems with controlled release of biologically active compounds]. Biotechnologia Acta, 4(2), 009-023.
[8] Grinin, L. E. (2019). Взгляд в будущее: прогнозы на XXI столетие [Look into the future: forecasts for the XXI century]. Век глобализации – The Age of Globalization, (3), 3-24.
[9] Kolosnitsyna, M. G., Kossova, T. V., & Sheluntsova, M. A. (2019). Факторы роста ожидаемой продолжительности жизни: кластерный анализ по странам мира [Growth factors of life expectancy: cluster analysis by countries of the world]. Демографическое обозрение – Demographic review, 6(1), 124-150. doi: 10.17323/demreview.v6i1.9114
[10] Kondratyuk, V. M., Kovalchuk, V. P., Tulchinsky, G. V., Oliynyk, O. V., & Varchenko, O. V. (2017). Доклінічне вивчення ефективності нових полімерних протимікробних композицій для створення системи локальної доставки антисептиків [Preclinical study of the effectiveness of new polymer antimicrobial compositions for creating a system of local delivery of antiseptics]. Ліки – людині. Сучасні проблеми фармакотерапії і призначення лікарських засобів – Medicines for humans. Modern problems of pharmacotherapy and the importance of drugs, (1), 172-176.
[11] Kovalchuk, V. P., Kondratyuk, V. M., Kovalenko, I. M., & Burkot, V. M. (2019). Фенотипові і генотипові детермінанти антибіотикорезистентності грамнегативних бактерій – етіологічних чинників інфекційних ускладнень бойових ран [Phenotypic and genotypic determinants of antibiotic resistance of gram - negative bacteria - etiological factors of infectious complications of battle wounds]. Мікробіологічний журнал – Microbiological Journal, (1), 61-71. doi: 10.15407/microbiolj81.01.061
[12] Legon’kova, O. A., Belova, M. S., Asanova, L. Yu., Aliev, A. D., & Chalykh, A. E. (2016). Полимеры в лечении ран: реалии и горизонты [Polymers in wound healing: realities and horizons]. Раны и раневые инфекции. Журнал имени профессора Б. М. Костючёнка – Wounds and wound infections. The professor B. M. Kostyuchenok journal, 3(1), 12- 18. doi: 10.17650/2408-9613-2016-3-1-12-18
[13] Martí, M., Frígols, B., & Serrano-Aroca, A. (2018). Antimicrobial characterization of advanced materials for bioengineering applications. Journal of visualized experiments: JoVE, (138), e57710. doi: 10.3791/57710
[14] Mayet, N., Choonara, Y. E., Kumar, P., Tomar, L. K., Tyagi, C., Du Toit, L. C., & Pillay, V. (2014). A comprehensive review of advanced biopolymeric wound healing systems. Journal of pharmaceutical sciences, 103(8), 2211-2230. doi: 10.1002/jps.24068
[15] Mayorova, A. V., Syisuev, B. B., Hanalieva, I. A., & Vihrova, I. V. (2018). Современный ассортимент, свойства и перспективы совершенствования перевязочных средств для лечения ран [Modern assortment, properties and perspectives of medical dressings improvement of wound treatment]. Фармация и фармакология – Pharmacy & Pharmacology. 6(1), 4-32. doi: 10.19163/2307-9266-2018-6-1-4-32
[16] Ministry of Health of Ukraine. (2007). Про затвердження методичних вказівок "Визначення чутливості мікроорганізмів до антибактеріальних препаратів" [About the statement of methodical instructions "Determination of sensitivity of microorganisms to antibacterial drugs"]. Наказ міністерства охорони здоров’я України № 167 – The order of the Ministry of Health of Ukraine № 167. Access mode: http//www.moz.gov.ua
[17] Mir, M., Ali, M. N., Barakullah, A., Gulzar, A., Arshad, M., Fatima, S., & Asad, M. (2018). Synthetic polymeric biomaterials for wound healing: a review. Progress in biomaterials, 7(1), 1-21. doi: 10.1007/s40204-018-0083-4
[18] Mogoşanu, G. D., & Grumezescu, A. M. (2014). Natural and synthetic polymers for wounds and burns dressing. International journal of pharmaceutics, 463(2), 127-136. doi: 10.1016/j.ijpharm.2013.12.015
[19] Paliy, G. K., Nazarchuk, O. A., & Bobyr, V. V. (2015). Оцінка антибактеріальних та протигрибкових властивостей сучасних антисептиків [Evaluation of antibacterial and antifungal properties of modern antiseptics]. Мікробіологія і біотехнологія – Microbiology and biotechnology, 4(32), 67-74.
[20] Shtilman, M. I. (2016). Биоматериалы – важное направление биомедицинских технологий [Biomaterials – an important area of biomedical technologies]. Вестник РГМУ – RGMU Bulletin, (5), 4-14.
[21] Straccia, M. C., d'Ayala, G. G., Romano, I., Oliva, A., & Laurienzo, P. (2015). Alginate hydrogels coated with chitosan for wound dressing. Marine drugs, 13(5), 2890-2908. doi: 10.3390/ md13052890
[22] Tikhonovskiy, M. A., Shepelev, A. G., Kutniy, K. V., Nemashkalo, O. V. (2008). Биоматериалы: анализ современных тенденций развития на основе данных об информационных потоках [Biomaterials: analysis of modern development trends based on data on information flows]. Вопросы атомной науки и техники – Questions of atom science and technology, (1), 166-172.
[23] US Department of Health and Human Services. (2019). CDC. Antibiotic Resistance Threats in the United States, 2019. Atlanta, GA, USA: US Department of Health and Human Services, CDC.
[24] World Health Organisation. (2014). Antimicrobial Resistance: Global Report on Surveillance. Geneva, Switzerland: WHO Press.
[25] World Health Organization. (2017). Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf?ua=1
[26] Yaser, D. (2019). Biomaterials Science and Technology: Fundamentals and Developments. CRC Press. doi: 10.1201/9780429465345
Published
2020-10-29
How to Cite
Nazarchuk, A. A., Denisko, T. V., Voloshchuk, N. I., & Nazarchuk , H. H. (2020). The study of antimicrobial properties of film materials based on biopolymers and antiseptics. Biomedical and Biosocial Anthropology, (39), 29-34. https://doi.org/10.31393/bba39-2020-05