Cognitive disorders in patients after cardiac surgery

  • A. V. Belinskyi Vinnytsia Regional Center of Cardiovascular Pathology, Vinnytsya, Ukraine
  • L. V. Rasputina National Pirogov Memorial Medical University, Vinnytsya, Ukraine
  • Y. M. Mostovoy National Pirogov Memorial Medical University, Vinnytsya, Ukraine
  • O. P. Mostova National Pirogov Memorial Medical University, Vinnytsya, Ukraine
  • T. D. Danilevych National Pirogov Memorial Medical University, Vinnytsya, Ukraine
Keywords: cognitive disorders, Montreal cognitive test, cardiovascular diseases, cardiac surgery, coronary heart disease.


The occurrence of cognitive disorders is a common problem after surgery. The degree of worsening of cognitive functions after surgery and anesthesia has a significant impact on the patient's health and is significantly associated with prolonged recovery in the hospital, increased morbidity and delayed functional recovery. The aim of the study was to increase the effectiveness of the diagnosis of moderate cognitive impairment and to determine its gender and age characteristics in patients before and after cardiac surgery in the early postoperative period (3 and 7 days). We examined 56 patients who underwent cardiac surgery for coronary heart disease in 37 (66.1 %) and valvular heart defects in 19 (33.9 %) patients. Assessment of cognitive functions was performed before surgery, on the 3rd and 7th day of the postoperative period. Testing was performed using the Montreal Cognitive Test. Statistical processing of the obtained data was performed on a personal computer using the statistical software package SPSS 12.0 for Windows using parametric and non-parametric methods. It was found that presence of cognitive disorders before surgery was registered in 37 (66.1 %) patients, mostly among the age of group of 60-74 years and had no gender difference. It was found that in the early postoperative period there is a significant worsening of cognitive functions in patients after cardiac surgery on 3rd day – in 45 (80.4 %), on 7th day – in 44 (78.6 %) patients, respectively.


[1] Belrose, J. C., & Noppens, R. R. (2019). Anesthesiology and cognitive impairment: a narrative review of current clinical literature. BMC anesthesiology, 19(1), 1-12. doi: 10.1186/s12871-019-0903-7
[2] Berger, M., Terrando, N., Smith, S. K., Browndyke, J. N., Newman, M. F., & Mathew, J. P. (2018). Neurocognitive function after cardiac surgery: from phenotypes to mechanisms. Anesthesiology, 129(4), 829-851. doi: 10.1097/ALN.0000000000002194
[3] Berger, M., Nadler, J. W., Browndyke, J., Terrando, N., Ponnusamy, V., Cohen, H. J., ... & Mathew, J. P. (2015). Postoperative cognitive dysfunction: minding the gaps in our knowledge of a common postoperative complication in the elderly. Anesthesiology clinics, 33(3), 517-550. doi: 10.1016/j.anclin.2015.05.008
[4] Bruggemans, E. F. (2013). Cognitive dysfunction after cardiac surgery: Pathophysiological mechanisms and preventive strategies. Netherlands Heart Journal, 21(2), 70-73. doi: 10.1007/s12471-012-0347-x
[5] Chernov, V. I., Efimova, N. Y., Efimova, I. Y., Akhmedov, S. D., & Lishmanov, Y. B. (2006). Short-term and long-term cognitive function and cerebral perfusion in off-pump and on-pump coronary artery bypass patients. European Journal of Cardio-thoracic Surgery, 29(1), 74-81. doi: 10.1016/j.ejcts.2005.10.001
[6] Evered, L., Scott, D. A., Silbert, B., & Maruff, P. (2011). Postoperative cognitive dysfunction is independent of type of surgery and anesthetic. Anesthesia & Analgesia, 112(5), 1179-1185. doi: 10.1213/ANE.0b013e318215217e
[7] Evered, L., Silbert, B., Knopman, D. S., Scott, D. A., DeKosky, S. T., Rasmussen, L. S., ... & Nomenclature Consensus Working Group. (2018). Recommendations for the nomenclature of cognitive change associated with anaesthesia and surgery–2018. Anesthesiology, 129(5), 872-879. doi: 10.1016/j.bja.2017.11.087
[8] Galvin, J. E., & Sadowsky, C. H. (2012). Practical guidelines for the recognition and diagnosis of dementia. The Journal of the American Board of Family Medicine, 25(3), 367-382. doi: 10.3122/jabfm.2012.03.100181
[9] Huijts, M., Van Oostenbrugge, R. J., Duits, A., Burkard, T., Muzzarelli, S., Maeder, M. T., ... & Brunner‐La Rocca, H. P. (2013). Cognitive impairment in heart failure: results from the trial of intensified versus standard medical therapy in elderly patients with congestive heart failure (TIME‐CHF) randomized trial. European journal of heart failure, 15(6), 699-707. doi: 10.1093/eurjhf/hft020
[10] Itagaki, A., Sakurada, K., Matsuhama, M., Yajima, J., Yamashita, T., & Kohzuki, M. (2020). Impact of frailty and mild cognitive impairment on delirium after cardiac surgery in older patients. Journal of cardiology, 76(2), 147-153. doi: 10.1016/j.jjcc.2020.02.007
[11] Julayanont, P., Brousseau, M., Chertkow, H., Phillips, N., & Nasreddine, Z. S. (2014). Montreal Cognitive Assessment Memory Index Score (MoCA‐MIS) as a Predictor of Conversion from Mild Cognitive Impairment to A lzheimer's Disease. Journal of the American Geriatrics Society, 62(4), 679-684. doi: 10.1111/jgs.12742
[12] Knipp, S. C., Matatko, N., Wilhelm, H., Schlamann, M., Thielmann, M., Lösch, C., ... & Jakob, H. (2008). Cognitive outcomes three years after coronary artery bypass surgery: relation to diffusion-weighted magnetic resonance imaging. The Annals of thoracic surgery, 85(3), 872-879. doi: 10.1016/j.athoracsur.2007.10.083
[13] Monk, T. G., Weldon, B. C., Garvan, C. W., Dede, D. E., Van Der Aa, M. T., Heilman, K. M., & Gravenstein, J. S. (2008). Predictors of cognitive dysfunction after major noncardiac surgery. The Journal of the American Society of Anesthesiologists, 108(1), 18-30. doi: 10.1097/01.anes.0000296071.19434.1e
[14] Newman, M. F., Kirchner, J. L., Phillips-Bute, B., Gaver, V., Grocott, H., Jones, R. H., ... & Blumenthal, J. A. (2001). Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. New England Journal of Medicine, 344(6), 395-402. doi: 10.1056/NEJM200102083440601
[15] Newman, M. F., Mathew, J. P., Grocott, H. P., Mackensen, G. B., Monk, T., Welsh-Bohmer, K. A., ... & Mark, D. B. (2006). Central nervous system injury associated with cardiac surgery. The Lancet, 368(9536), 694-703. doi: 10.1016/S0140-6736(06)69254-4
[16] Nguyen, Q., Uminski, K., Hiebert, B. M., Tangri, N., & Arora, R. C. (2018). Midterm outcomes after postoperative delirium on cognition and mood in patients after cardiac surgery. The Journal of thoracic and cardiovascular surgery, 155(2), 660-667. doi: 10.1016/j.jtcvs.2017.09.131
[17] Ottens, T. H., Dieleman, J. M., Sauër, A. M. C., Peelen, L. M., Nierich, A. P., de Groot, W. J., ... & DExamethasone for Cardiac Surgery (DECS) Study Group. (2014). Effects of dexamethasone on cognitive decline after cardiac surgery: a randomized clinical trial. Anesthesiology, 121(3), 492-500. doi: 10.1097/ALN.0000000000000336
[18] Rasmussen, L. S., Larsen, K., Houx, P., Skovgaard, L. T., Hanning, C. D., Moller, J. T., & ISPOCD group. (2001). The assessment of postoperative cognitive function. Acta Anaesthesiologica Scandinavica, 45(3), 275-289. doi: 10.1034/j.1399-6576.2001.045003275.x
[19] Romero, J. R., Beiser, A., Seshadri, S., Benjamin, E. J., Polak, J. F., Vasan, R. S., ... & Wolf, P. A. (2009). Carotid artery atherosclerosis, MRI indices of brain ischemia, aging, and cognitive impairment: the Framingham study. Stroke, 40(5), 1590-1596. doi: 10.1161/STROKEAHA.108.535245
[20] Rovio, S. P., Pahkala, K., & Raitakari, O. T. (2019). Cognitive Decline Before and After Incident Coronary Heart Disease: Opportunity to Intervene Cognitive Function Trajectories. Journal of the American College of Cardiology, 73(24), 3051-3053. doi: 10.1016/j.jacc.2019.04.020
[21] Rudolph, J. L., Schreiber, K. A., Culley, D. J., McGlinchey, R. E., Crosby, G., Levitsky, S., & Marcantonio, E. R. (2010). Measurement of post‐operative cognitive dysfunction after cardiac surgery: a systematic review. Acta Anaesthesiologica Scandinavica, 54(6), 663-677. doi: 10.1111/j.1399-6576.2010.02236.x
[22] Sauër, A. C., Veldhuijzen, D. S., Ottens, T. H., Slooter, A. J. C., Kalkman, C. J., & Van Dijk, D. (2017). Association between delirium and cognitive change after cardiac surgery. BJA: British Journal of Anaesthesia, 119(2), 308-315. doi: 10.1093/bja/aex053
[23] Selnes, O. A., Grega, M. A., Bailey, M. M., Pham, L. D., Zeger, S. L., Baumgartner, W. A., & McKhann, G. M. (2008). Cognition 6 years after surgical or medical therapy for coronary artery disease. Annals of neurology, 63(5), 581-590. doi: 10.1002/ana.21382
[24] Silverstein, J. H. (2014). Cognition, anesthesia, and surgery. International anesthesiology clinics, 52(4), 42-57. doi: 10.1097/AIA.0000000000000032
[25] Vogels, R. L., Oosterman, J. M., Van Harten, B., Scheltens, P., Van Der Flier, W. M., Schroeder‐Tanka, J. M., & Weinstein, H. C. (2007). Profile of cognitive impairment in chronic heart failure. Journal of the American Geriatrics Society, 55(11), 1764-1770. doi: 10.1111/j.1532-5415.2007.01395.x
[26] Wang, W. C., Dew, I. T., & Cabeza, R. (2015). Age-related differences in medial temporal lobe involvement during conceptual fluency. Brain research, 1612, 48-58. doi: 10.1016/j.brainres.2014.09.061
[27] Williams, U. E., Owolabi, M. O., Ogunniyi, A., & Ezunu, E. O. (2013). Prevalence and pattern of neurocognitive impairment in Nigerians with stages 3 to 5 chronic kidney disease. International Scholarly Research Notices, 2013. doi: 10.1155/2013/374890
How to Cite
Belinskyi, A. V., Rasputina, L. V., Mostovoy, Y. M., Mostova, O. P., & Danilevych, T. D. (2021). Cognitive disorders in patients after cardiac surgery. Biomedical and Biosocial Anthropology, (40), 26-32.