Investigation of pharmacokinetics of N-(4-trifluoromethylphenyl)-4-methyl-2.2-dioxo-1H-2λ6.1-benzothiazine-3-carboxamide various crystalline modifications in vivo

  • P. S. Bondarenko National Pirogov Memorial Medical University, Vinnytsya, Ukraine
  • N. I. Voloshchuk National Pirogov Memorial Medical University, Vinnytsya, Ukraine
  • V. B. Larionov A.V. Bogatsky Physico-Chemical Institute National Academy of Sciences of Ukraine, Odesa, Ukraine
  • H. О. Fedoseenko ALC «Interhim», Odesa, Ukraine
Keywords: N-(4-trifluoromethylphenyl)-4-methyl-2.2-dioxo-1H-2λ6.1-benzothiazine-3-carboxamide, polymorphic modifications, crystal habitus, parameters of pharmacokinetic.

Abstract

The phenomenon of polymorphism, inherent in many biologically active substances, including drugs, is an extremely serious problem that requires close attention and comprehensive study. Various crystalline modifications of biologically active compounds, as well as excipients can dramatically change the biopharmaceutical properties and pharmacological characteristics of already known drugs. The bioactive compound N-(4-trifluoromethylphenyl)-4-methyl-2.2-dioxo-1H-2λ6.1-benzothiazine-3-carboxamide was obtained by bioisosterical substitution in the molecule of known non-steroidal anti-inflammatory drugs of the oxycam group in the form of three polymorphic modifications of the crystal. sticks (form A), plates (form B) and blocks (form C) with varying degrees of analgesic and anti-inflammatory effects. The aim of the study was to investigate the pharmacokinetic profile of these polymorphic forms of benzothiazine-3-carboxamide derivative by their oral administration in vivo. The concentration of compounds in the blood of mice was determined by HPLC and the main pharmacokinetic parameters were calculated. It was found that the polymorphic form in the form of plates (form B), in particular, having the largest surface area of crystals, has differences mainly at the stage of absorption with corresponding changes in absorption values, maximum concentration and time of its achievement, has the highest bioavailability and rapid elimination which correlates with the most optimal pharmacological and toxicological characteristics of this compound in comparison with other crystalline forms. This makes it possible to recommend the most active and safe polymorphic form of the compound (form B) for in-depth preclinical study and possible clinical trials as an analgesic and anti-inflammatory agent.

Downloads

Download data is not yet available.

References

[1] Ahr, G., Voith, B., & Kuhlmann, J. (2000). Guidances related to bioavailability and bioequivalence: European industry perspective. European journal of drug metabolism and pharmacokinetics, 25(1), 25-27. doi: 10.1007/BF03190052
[2] Babilev, F. V., & Andronic, I. Ya. (1981). Полиморфизм лекарственных веществ [Polymorphism of drug substances]. Кишинев: Штиинца – Chisinau: Shtiintsa.
[3] Bernstein, J. (2011). Polymorphism – A perspective. Crystal Growth & Design, 11(3), 632-650. doi: 10.1021/cg1013335
[4] Bukovec, P., Benkiˇc, P., Smrkolj, M., & Vreˇcer, F. (2016). Effect of crystal habit on the dissolution behavior of simvastatin crystals and its relationship to crystallization solvent properties. Pharmazie-An International Journal of Pharmaceutical Sciences, 71(5), 263-268. PMID: 27348970
[5] Chernyshev, V. V., Morozov, Y. N., Bushmarinov, I. S., Makoed, A. A., & Sergeev, G. B. (2016). New polymorph of dehydroepiandrosterone obtained via criomodification. Crystal Growth & Design, 16(2), 1088-1095. doi: 10.1021/acs.cgd.5b01666
[6] Dhillon, S., & Gill, K. (2006). Basic Pharmacokinetics. Clinical Pharmacokinetics, Pharmaceutical Press, London.
[7] Fandaruff, C., Silva, M. A. S., Bedor, D. C. G., de Santana, D. P., Rocha, H. V. A., Rebuffi, L., ... & Cuffini, S. L. (2015). Correlation between microstructure and bioequivalence in Anti-HIV Drug Efavirenz. European Journal of Pharmaceutics and Biopharmaceutics, 91, 52-58. doi: 10.1016/j.ejpb.2015.01.020
[8] Gelbrich, T., Meischberger, I., & Griesser, U. J. (2015). Two polymorphs of 5-cyclohexyl-5-ethylbarbituric acid and their packing relationships with other barbiturates. Acta Crystallographica Section C: Structural Chemistry, 71(3), 204-210. doi: 10.1107/S2053229615002880
[9] Gildeeva, G. N. (2017). Полиморфизм: влияние на качество лекарственных средств и актуальные методы анализа [Polymorphism: Impact on Drug Quality and Current Analysis Methods]. Качественная клиническая практика – Good clinical practice, 1, 56-60.
[10] Hilfiker, R. (2006). Polymorphism in pharmaceutical industry. Weinheim: Wiley-VCH.
[11] Hooper, D., Clarke, F. C., Docherty, R., Mitchell, J. C., & Snowden, M. J. (2017). Effects of crystal habit on the sticking propensity of Ibuprofen – A case study. International journal of pharmaceutics, 531(1), 266-275. doi: 10.1016/j.ijpharm.2017.08.091
[12] Leuner, C., & Dressman, J. (2000). Improving drug solubility for oral delivery using solid dispersions. Pharmaceutics and Biopharmaceutics, 50(1), 47-60. doi: 10.1016/s0939-6411(00)00076-x
[13] Lutay, M. I., Lysenko, А. F., & Moiseenko, О. I. (2009). Использование оптических изомеров известных сердечно-сосудистых средств – путь к повышению их эффективности и переносимости [The use of optical isomers of known cardiovascular drugs is a way to increase their effectiveness and tolerance]. Український кардиологічний журнал – Ukrainian Journal of Cardiology, (4), 13-20.
[14] Morissette, S. L., Soukasene, S., Levinson, D., Cima, M. J., & Almarsson, Ö. (2003). Elucidation of crystal form diversity of the HIV protease inhibitor ritonavir by high-throughput crystallization. Proceedings of the National Academy of Sciences, 100(5), 2180-2184. doi: 10.1073/pnas.0437744100
[15] Muresan-Pop, M., Braga, D., Pop, M. M., Borodi, G., Kacso, I., & Maini, L. (2014). Crystal structure and physicochemical characterization of Ambazone monohydrate, anhydrous, and acetate salt solvate. Journal of pharmaceutical sciences, 103(11), 3594-3601. doi: 10.1002/jps.24151
[16] Petrushova, L. A., Ukrainets, I. V., Dzyubenko, S. P., & Grinevich, L. A. (2015), Synthesis and the biological activity of 4-hydroxy-2,2-dioxo-1H-2λ6 ,1-benzothiazin-3-carboxylic acids trifluoromethyl-substituted anilides. Journal of Organic and Pharmaceutical Chemistry, 13(1(49)), 44-48. doi: 10.24959/ophcj.15.826
[17] Santos, O. M. M., Freitas, J. T. J., Cazedey, E. C. L., Araújo, M. B. D., & Doriguetto, A. C. (2016). Structure, solubility and stability of Orbifloxacin crystal forms: hemihydrate versus anhydrate. Molecules, 21(3), 328. doi: 10.3390/molecules21030328
[18] Stoica, C., Verwer, P., Meekes, H., Van Hoof, P. J. C. M., Kaspersen, F. M., & Vlieg, E. (2004). Understanding the effect of a solvent on the crystal habit. Crystal growth & design, 4(4), 765-768. doi: 10.1021/cg0342314
[19] Ukrainets, I. V., Petrushova, L. A., Fedosov, A. I., Voloshchuk, N. I., Bondarenko, P. S., Shishkina, S. V., ... & Sim, G. (2020). Crystal Habits and Biological Properties of N-(4-Trifluoromethylphenyl)-4-Hydroxy-2, 2-Dioxo-1H-2λ6, 1-Benzothiazine-3-Carboxamide. Scientia Pharmaceutica, 88(1), 45-60. doi: 10.3390/scipharm88010001
[20] Watanabe, A., Yamaoka, Y., & Takada, K. (1982). Crystal habits and dissolution behavior of aspirin. Chemical and Pharmaceutical Bulletin, 30(8), 2958-2963. doi: 10.1248/cpb.30.2958
Published
2020-12-28
How to Cite
Bondarenko, P. S., Voloshchuk, N. I., Larionov, V. B., & Fedoseenko H. О. (2020). Investigation of pharmacokinetics of N-(4-trifluoromethylphenyl)-4-methyl-2.2-dioxo-1H-2λ6.1-benzothiazine-3-carboxamide various crystalline modifications in vivo. Biomedical and Biosocial Anthropology, (41), 46-51. https://doi.org/10.31393/bba41-2020-08