Morphological features of bone tissue in "disuse atrophy" on the example of a segment of the human lower jaw: clinical experience of treatment

  • A. P. Oshurko Bukovinian State Medical University, Chernivtsi, Ukraine
  • I. Yu. Oliinyk Bukovinian State Medical University, Chernivtsi, Ukraine
  • N. I. Yaremchuk Bukovinian State Medical University, Chernivtsi, Ukraine
  • I. S. Makarchuk Bukovinian State Medical University, Chernivtsi, Ukraine
Keywords: atrophy, bone tissue, PRGF, autocellular grafts, augmentation.


Current real-time science and technology techniques based on ENDORET PRGF technologies and the implementation of their results in practical medicine, provide ample opportunities for the use of cell autotransplantation for guided tissue regeneration, including in the treatment of "disuse atrophy" of the human lower jaw bone tissue with early tooth loss. The purpose of this work is to ensure the principles of biological feasibility and physiological capacity, technical rationality. The pathology in the distal segment of a lower limb, which is a vertical atrophy of bone tissue was confirmed by the methods of computed tomography, Vatech PaX-I 3D Green systems of extra-oral radiography with a scan size range of 16×9 cm, a focal spot of 0.5 mm (IEC60336) with a gray scale of 14 bits with a size of 0.2/0.3 voxel. Using ENDORET PRGF technology, according to the approved BTI protocol, autocellular grafts that have provided a positive result that meets the basic principles of the goal in restoring the mechanisms of physiological processes of normal quantitative and qualitative morphology of bone tissue, with its biological characteristics were obtained. The results of the study showed that bone tissue on a scale of shades of gray based on the classification of Hounsfield, is not characterized by a single biotype and in the area of missing 3.6 tooth belongs to the second biotype, and in the area of missing 3.7 tooth – to the first biotype by its density. The indicators of densitometric determination confirmed excessive mineralization of the trabecular layer, ie vertical atrophy of bone tissue, which is in the sagittal section in the projection of the missing 36 teeth – with a maximum number of 881 gray standard units (GSU), M=315 GSU (where, M is the average value of absolute number); sagittal section in the projection of the missing 37 teeth – with a maximum number of 1726 GSU, M=1173 GSU. This clinical experience with the use of autocellular grafts in the treatment of "disuse atrophy" of the bone tissue of the jaws, which is essentially scientifically-research in nature, based on modern, at the same time available technologies of cell engineering and technical progress, provides a predictable result of clinical observation and deserves further research and practical testing.


[1] Abdullah, W. A. (2016). Evaluation of bone regenerative capacity in rats claverial bone defect using platelet rich fibrin with and without beta tri calcium phosphate bone graft material. Saudi Dent J, 28(3), 109-117. doi: 10.1016/j.sdentj.2015.09.003
[2] Anitua, E., Prado, R., Troya, M., Zalduendo, M., de la Fuente, M., Pino, A., … & Orive, G. (2016). Implementation of more physiological plasma rich in growth factor (PRGF) protocol: Anticoagulant removal and reduction in activator concentration. J. Platelets, 27(5), 459-466. doi: 10.3109/09537104.2016.1143921
[3] Annibali, S., Pranno, N., Cristalli, M. P., La Monaca, G., & Polimeni, A. (2016). Survival Analysis of Implant in Patients With Diabetes Mellitus: A Systematic Review. Implant Dent, 25(5), 663-674. doi: 10.1097/ID.0000000000000478
[4] Avetikov, D. S., Pronina, O. M., Lokes, K. P., & Bukhanchenko, O.P. (2017). Сучасні уявлення про умови, які обмежують вибір методу дентальної імплантації на верхніх і нижніх щелепах [Modern ideas about the conditions that limit the choice of method of dental implantation in the upper and lower jaws]. Вісник проблем біології і медицини – Bulletin of problems of biology and medicine. 4(3), 20-27. doi: 10.29254/2077–4214–2017–4–3–141–20-27
[5] Bahrii, M. M., Dibrova, V. A., Popadynets, O. H., & Hryshchuk, M. I. (2016). Методики морфологічних досліджень: монографія; за ред. М. М. Багрія, В. А. Діброви [Methods of morphological research: monograph; edited by M. M. Bahrii, V. A. Dibrova]. Vinnytsia: New Book, 2016.
[6] Barbeck, M., Najman, S., Stojanovic, S., Mitic, Z., Zivkovic, J. M, Choukroun, J., … & Ghanaati, S. (2015). Addition of blood to a phycogenic bone substitute leads to increased in vivo vascularization. Biomed Mater (Bristol, England), 10(5), 055007. doi: 10.1088/1748-6041/10/5/055007
[7] Barylo, O. S., Kanishyna, T. M., & Biloshytska, A. V. (2017). Дослідження впливу фібріну, збагаченого тромбоцитами (platelet rich fibrin, prf), на регенерацію тканин парадонта в експерименті [Study of the effect of platelet-enriched fibrin (platelet rich fibrin, prf) on the regeneration of periodontal tissues in the experiment]. Український стоматологічний альманах – Ukrainian Dental Almanac, (2), 5-8.
[8] Bassetti, M. A., Bassetti, R. G., & Bosshardt, D. D. (2016). The alveolar ridge splitting/expansion technique: a systematic review. Clin Oral Implants Res, 27(3), 310-324. doi: 10.1111/clr.12537
[9] Bassetti, M., Kaufmann, R., Salvi, G. E., Sculean, A., & Bassetti, R. (2015). Soft tissue grafting to improve the attached mucosa at dental implants: A review of the literature and proposal of a decision tree. Quintessence Int, 46(6), 499-510. doi: 10.3290/j.qi.a33688
[10] Cai, X., Xing, J., Long, C., Peng, Q., & Beth Humphrey, M. (2017). DOK3 modulates bone remodeling by negatively regulating osteoclastogenesis and positively regulating osteoblastogenesis. J. Bone Miner. Res, (32), 2207-2218. doi: 10.1002/jbmr.3205
[11] Carlino, F., Pantaleo, G., Ciuffolo, F., Claudio, P. P., & Cortese, A. (2016). New Technique for Mandibular Symphyseal Distraction by a Double-Level Anchorage and Fixation System: Advantages and Results. J Craniofac Surg, 27(6), 1469-1475. doi: 10.1097/scs.0000000000002831
[12] Chang, A. T., Liu, Y., Ayyanathan, K., Benner, Ch., Jiang, Y., Prokop, J. W., … & Yang, J. (2015). An evolutionarily conserved DNA architecture determines target specificity of the TWIST family bHLH transcription factors. Genes dev, 29(6), 603-616. doi: 10.1101/gad.242842.114
[13] Cortese, A., Pantaleo, G., Amato, M., & Claudio, P. P. (2016). Ridge Expansion by Flapless Split Crest and Immediate Implant Placement: Evolution of the Technique. J Craniofac Surg, 27(2), e123-128. doi: 10.1097/SCS.0000000000002367
[14] Cortese, А., Pantaleo, G., Borri, A., Caggiano, M., & Amato, M. (2016). Platelet-rich fibrin (PRF) in implant dentistry in combination with new bone regenerative technique in elderly patients. Int J Surg Case Rep, (28), 52-56. doi: 10.1016/j.ijscr.2016.09.022
[15] Du, Z., Xiao, Y., Hashimi, S., Hamlet, S. M., & Ivanovski, S. (2016). The effects of implant topography on osseointegration under estrogen deficiency induced osteoporotic conditions: Histomorphometric, transcriptional and ultrastructural analysis. Acta Biomater, (42), 351-363. doi: 10.1016/j.actbio.2016.06.035
[16] Figliuzzi, M. M., Giudice, A., Pileggi, S., Pacifico, D., Marrelli, M., Tatullo, M., & Fortunato, L. (2016). Implant-Prosthetic Rehabilitation in Bilateral Agenesis of Maxillary Lateral Incisors with a Mini Split Crest. Case Rep Dent, 2016, 3591321. doi: 10.1155/2016/3591321
[17] Fujioka-Kobayashi, M., Schaller, B., Saulacic, N., Zhang, Y., & Miron. R. J. (2017). Growth factor delivery of BMP9 utilizing a novel natural bovine bone graft with integrated atelo-collagen type I: Biosynthesis, characterization and cell behavior. J Biomed Mater Res A, 105(2), 408-418. doi: 10.1002/jbm.a.35921
[18] Fujioka-Kobayashi, M., Miron, R. J., Hernandez, M., Kandalam, U., Zhang, Y., & Choukroun, J. (2017). Optimized platelet rich fibrin with the low speed concept: growth factor release, biocompatibility and cellular response. J. Periodontol, 88(1), 112-121. doi: 10.1902/jop.2016.160443
[19] Giro, G., Chambrone, L., Goldstein, A., Rodrigues, J. A., Zenobio, E., Feres, M., … & Shibli, J. A. (2015). Impact of osteoporosis in dental implants: A systematic review. World journal of orthopedics, 6(2), 311-315. doi: 10.5312/wjo.v6.i2.311
[20] Grigorov, S. M., Krynychko, L. R., Steblovsky, D. V., Stavytsky, S. O., & Akhmerov, V. D. (2018). Сучасний погляд на експериментальне і клінічне обгрунтування використання prf у процесах репаративної регенерації шкіри [Modern view on the experimental and clinical justification of the use of prf in the processes of reparative skin regeneration]. Український стоматологічний альманах – Ukrainian Dental Almanac, (2), 45-48.
[21] Javed, F., Malmstrom, H., Kellesarian, S. V., Al-Kheraif, A. A., Vohra, F., & Romanos, G. E. (2016). Efficacy of Vitamin D3 Supplementation on Osseointegration of Implants. Implant dentistry, 25(2), 281-287. doi: 10.1097/ID.0000000000000390
[22] Ketabi, M., Deporter, D., & Atenafu, E. G. (2016). A Systematic Review of Outcomes Following Immediate Molar Implant Placement Based on Recently Published Studies. Clin Implant Dent Relat Res, 18(6), 1084-1094. doi: 10.1111/cid.12390
[23] King, S., Klineberg, I., Levinger, I., & Brennan-Speranza, T. C. (2016). The effect of hyperglycaemia on osseointegration: a review of animal models of diabetes mellitus and titanium implant placement. Arch Oosteoporos, 11(1), 29. doi: 10.1007/s11657-016-0284-1
[24] Kohli, N., Ho, S., Brown, S. J., Sawadkar, P., Sharma, V., Snow, M., & García-Gareta, E. (2018). Bone remodelling in vitro: where are we headed? - A review on the current understanding of physiological bone remodelling and inflammation and the strategies for testing biomaterials in vitro. Bone, (110), 38-46. doi: 10.1016/j.bone.2018.01.015
[25] Langdahl, B., Ferrari, S., & Dempster, D. W. (2016). Bone modeling and remodeling: potential as therapeutic targets for the treatment of osteoporosis. Ther. Adv. Musculoskel. Dis, (8), 225-235. doi: 10.1177/1759720X16670154
[26] Liu, M., Sun, Y., & Zhang, Q. (2018). Emerging role of extracellular vesicles in bone remodeling. J. Dental Res, (97), 859-868. doi: 10.1177/0022034518764411
[27] Liu, S., Zhu, W., Li, S., Ma, J., Zhang, H., Li, Z., … & Shi, W. (2016). Bovine parathyroid hormone enhances osteoclast bone resorption by modulating V-ATPase through PTH1R. Int. J. Mole. Med., (37), 284-292. doi: 10.3892/ijmm.2015.2423
[28] Luo, G., Sun, S. J., Weng, T. J., Li, X. M., Wang, Z. G., & Zhang, B. (2016). Effect of osteoclasts on murine osteoblastic differentiation in early stage of co-culture. Int. J. Clin. Exp. Med., (9), 1062-1072.
[29] Mandatori, D., Penolazzi, L., Pipino, C., Di Tomo, P., Di Silvestre, S., Di Pietro, N., … & Assunta, P. (2017). Menaquinone-4 enhances osteogenic potential of human amniotic fluid mesenchymal stem cells cultured in a 2D and 3D dynamic culture system. J. Tissue Eng. Regenerat. Med., (12), 447-459. doi: 10.1002/term.2471
[30] Meloni, S. M., Jovanovic, S. А., Urban, I., Canullo, L., Pisano, М., & Tallarico, M. (2017). Horizontal ridge augmentation using GBR with a native collagen membrane and 1:1 ratio of particulated xenograft and autologus bone: a 1-year prospective clinical study. Clin Implant Dent Relat Res, 19(1), 38-45. doi: 10.1111 / cid.12429
[31] Mestas, G., Alarcón, M., & Chambrone, L. (2016). Long-Term Survival Rates of Titanium Implants Placed in Expanded Alveolar Ridges Using Split Crest Procedures: A Systematic Review. Int J Oral Maxillofac Implants, 31(3), 591-599. doi: 10.11607/jomi.4453
[32] Miron, R. J., Fujioka-Kobayashi, M., Hernandez, M., Kandalam, U., Zhang, Y., Ghanaati, S., & Choukroun, J. (2017). Injectable platelet rich fibrin (i-PRF): opportunities in regenerative dentistry? Clin Oral Investig, 21(8), 2619-2627. doi: 10.1007/s00784-017-2063-9
[33] Miron, R. J., Fujioka-Kobayashi, M., Bishara, M., Zhang, Y., Hernandez, M., & Choukroun, J. (2017). Platelet-Rich Fibrin and Soft Tissue Wound Healing: A Systematic Review. Tissue Eng Part B Rev, 23(1), 83-99. doi: 10.1089/ten.TEB.2016.0233
[34] Nelson, K., Schmelzeisen, R., Taylor, T. D., Zabler, S., Wiest, W., & Fretwurst, T. (2016). The Impact of Force Transmission on Narrow-Body Dental Implants Made of Commercially Pure Titanium and Titanium Zirconia Alloy with a Conical Implant-Abutment Connection: An Experimental Pilot Study. The International journal of oral & maxillofacial implants, 31(5), 1066–1071.
[35] Owen, R., & Reilly, G. C. (2018). In vitro Models of Bone Remodelling and Associated Disorders. Frontiers in bioengineering and biotechnology, (6), 134. doi: 10.3389/fbioe.2018.00134
[36] Paiva, K. B. S., & Granjeiro, J. M. (2017). Matrix metalloproteinases in bone resorption, remodeling, and repair. Progress Mole. Biol. Transl. Sci., (148), 203-303. doi: 10.1016/bs.pmbts.2017.05.001
[37] Penolazzi, L., Lolli, A., Sardelli, L., Angelozzi, M., Lambertini, E., Trombelli, L., … & Piva, R. (2016). Establishment of a 3D-dynamic osteoblasts-osteoclasts co-culture model to simulate the jawbone microenvironment in vitro. Life Sci, (152), 82-93. doi: 10.1016/j.lfs.2016.03.035
[38] Puisys, A., & Linkevicius, T. (2015). The influence of mucosal tissue thickening on crestal bone stability around bone-level implants. A prospective controlled clinical trial. Clinical oral implants research, 26(2), 123-129. doi: 10.1111 / clr.12301
[39] Ricci, D., & Aymetti, M. (2015). Диагностика и лечение заболеваний пародонта [Diagnosis and treatment of periodontal diseases]. Москва: Издательский дом “Азбука стоматолога” – Moscow: “Alphabet of the dentist” Publishing House.
[40] Rubert, M., Vetsch, J. R., Lehtoviita, L., Hofmann, S., & Muller, R. (2017). Bone remodelling imaging in a human-based in vitro co-culture model-A proof of concept. In eCM Meeting Abstract Collect. (Vol. 2, p. 29). doi: 10.20944/preprints 201702.0047.v1
[41] Rybak, V. A., Natrus, L. V., Kopchak, A. V., Pavlychuk, T. O., & Chernovol, P. A. (2017). Чинники, що впливають на вміст та функціональні властивості тромбоцитів у плазмі, збагаченій факторами росту (PRGF Endoret) [Factors influencing the content and functional properties of platelets in plasma enriched with growth factors (PRGF Endoret)]. Медицина неотложных состояний – Emergency medicine, 1(80), 159-167.
[42] Siebert, T., Jurkovic, R., Statelova, D., & Strecha, J. (2015). Immediate Implant Placement in a Patient With Osteoporosis Undergoing Bisphosphonate Therapy: 1-Year Preliminary Prospective Study. The Journal of oral implantology, (41), 360-365. doi: 10.1563/AAID-JOI-D-13-00063
[43] Solodzhuk, Yu. I., Rozhko, M. M., Denysenko, O. H., & Yarmoshuk, I. R. (2019). Використання остеопластичного матеріалу тваринного походження при атрофії коміркового відростка верхньої щелепи та частини нижньої щелепи в поєднанні з осеїн-гідроксиапатитним комплексом[The use of osteoplastic material of animal origin in atrophy of the cellular process of the upper jaw and part of the lower jaw in combination with ossein-hydroxyapatite compound]. Вісник проблем біології і медицини – Bulletin of problems of biology and medicine, 1(2), 254-258. doi: 10.29254/2077-4214-2019-1-2-149-254-258
[44] Sprangers, S., & Everts, V. (2017). Molecular pathways of cell-mediated degradation of fibrillar collagen. Matrix Biology, (75), 190-200. doi: 10.1016/j.matbio.2017.11.008
[45] Suzuki, A., Sangani, D. R., & Ansari, A. (2015). Molecular mechanisms of midfacial developmental defects. Dev Dyn, (245), 276-293. doi: 10.1002/dvdy.24368
[46] Troiano, G., Laino, L., Dioguardi, M., Giannatempo, G., Muzio, L., & Russo, L. (2016). Mandibular Class II Furcation Defect Treatment: Effects of the Addition of Platelet Concentrates to Open Flap: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. J Periodontol, 87(9), 1030-1038. doi: 10.1902/jop.2016.160058
[47] Usenko, O. Yu., Radyoha, Ya. V., Grebeniuk, D. I., & Stukan, O. K. (2015). Поєднання клітинних технологій та мініінвазивної хірургії в лікуванні хронічної виразки шлунка [Combination of cells technologies and minsiinvasive surgery in the treatment of chronic gastric ulcer]. Клінічна хірургія – Klin Khir, (10), 25-28. PMID: 26946654
[48] Wang, Q. S., Wang, G. F., Lu, Y. R., Cui, Y. L., Li, H., Li, R. X., … & Liu T. J. (2017). The Combination of icariin and constrained dynamic loading stimulation attenuates bone loss in ovariectomy-induced osteoporotic mice. J. Orthop. Res., (36), 1415-1424. doi: 10.1002/jor.23777
[49] Yuan, F.-L., Wu, Q.-y., Miao, Z.-N., Xu, M.-H., Xu, R.-S., Jiang, D.-L., … & Li, X. (2018). Osteoclast-derived extracellular vesicles: novel regulators of osteoclastogenesis and osteoclast-osteoblasts communication in bone remodeling. Front. Physiol., (9), 628. doi: 10.3389/fphys.2018.00628
[50] Zhang, J., Shirai, M., Yamamoto, R., Yamakoshi, Y., Oida, S., Ohkubo, C., & Zeng, J. (2016). Effect of Nerve Growth Factor on Osseointegration of Titanium Implants in Type 2 Diabetic Rats. J Oral Maxillofac Implants, 31(5), 1189-1194. doi: 10.11607/jomi.4455
[51] Zhang, Y., Yang, S., Zhou, W., Fu, H., Qian, L., & Miron, R. J. (2016). Addition of a Synthetically Fabricated Osteoinductive Biphasic Calcium Phosphate Bone Graft to BMP2 Improves New Bone Formation. Clin Implant Dent Relat Res, 18(6), 1238-1247. doi: 10.1111/cid.12384
How to Cite
Oshurko, A. P., Oliinyk, I. Y., Yaremchuk, N. I., & Makarchuk, I. S. (2021). Morphological features of bone tissue in "disuse atrophy" on the example of a segment of the human lower jaw: clinical experience of treatment. Biomedical and Biosocial Anthropology, (42), 5-11.