The effect of prenatal action of dexamethasone on morphological changes of the thyroid gland stromal compartment in juvenile rats

  • O. V. Fedosieieva Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
  • V. S. Bushman Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
Keywords: thyroid gland, dexamethasone, morphogenesis, experiment, stromal component, rat.

Abstract

The thyroid gland is important for the normal functioning of the body, and is the largest endocrine organ, which among the endocrine glands will be the first in the process of embryogenesis. In recent decades, the prevalence of thyroid pathologies of various origins among the world's population has reached critical proportions. The use of glucocorticoids during pregnancy remains a debatable issue in obstetrics today, as they can both positively and negatively affect the processes of organ morphogenesis and be the cause of pathological conditions in the postnatal period. It is known that the entry of cortisol from mother to fetus through the placenta is controlled by enzymes produced by the latter. However, synthetic glucocorticoids, such as dexamethasone, can freely cross the blood-placental barrier and cause changes in postnatal immunity and disease in the future. The thyroid gland, having a relatively "simple" basic structure depending on the level of activity and the period of ontogenesis, exhibits various forms of morphological organization. Ideas about the structure and function of the thyroid gland were formed in the course of centuries of its study. Modern experimental and technical capabilities of the study of the body provided information about the structural and functional features of the thyroid gland and the numerical relationships of its structures at different levels of the organization. The aim of the study was to establish the features of the morphogenesis of the rats’ thyroid gland from 60 to 120 days of life after prenatal exposure to dexamethasone. Statistical analysis of the results was performed using a personal computer based on the Windows XP operating system using the statistical package "Statistica for Windows 6.0" (StatSoftInc., Serial number №AXXR712D833214FAN5), Excel (Microsoft Office, USA). Methods of variation statistics were used. All research results were recorded in journals and protocols of primary documentation, as well as with the use of electronic media. Significance of differences between groups was assessed using Student-Fisher t-test for a confidence level of at least 95 % (p <0.05). During the study it was found that in the juvenile period the morphological structure of the rats’ thyroid gland of intact and control groups is finally formed, in the parts of which the peripheral and central parts with rather high sclerosing index (6.20 and 6.46, respectively) can be microscopically distinguished due to prevalence. the percentage of parenchymal component (60.82±1.13 % and 61.44±0.71 %) above the stroma (9.86±1.02 % and 9.53±0.94 %). The study of material obtained from animals prenatally exposed to dexamethasone showed a violation of the morphogenesis of histoarchitectonics of the thyroid gland with the formation of a lobular structure of its particles due to an increase in stromal component (23.63±0.88 %), which was expressed in a decrease in sclerosis index (2.364), but there was a compensatory increase in the percentage of follicular epithelium on the 120th day of life (55.87±0.79 %) compared with the 90th day (49.24±1.25 %), without morphological signs of functional disorders.

References

[1] Asztalos, E. (2012). Antenatal Corticosteroids: A Risk Factor for the Development of Chronic Disease. J. Nutrition Metab, 2012, 9. doi: 10.1155/2012/930591
[2] Brown, R. S., Shalhoub, V., Coulter, S., Alex, S., Joris, I., De Vito, W., ... & Stein, G. S. (2000). Developmental regulation of thyrotropin receptor gene expression in the fetal and neonatal rat thyroid: relation to thyroid morphology and to thyroid-specific gene expression. Endocrinology, 141(1), 340-345. doi: 10.1210/endo.141.1.7258
[3] Chen, M., & Zhang, L. (2011). Epigenetic mechanisms in developmental programming of adult disease. Drug Discov Today, 16(23-24), 1007-1018. doi: 10.1016/j.drudis.2011.09.008
[4] Dawood, M., & Alkalby, J. (2020). Effect of treatment with dexamethasone on thyroid function in lactating female rats. Basrah Journal of Veterinary Research. 19, 331-345.
[5] Elmahdi, B., Hassan, M., & El-Bahr, S. (2016). Effect of prednisolone on thyroid and gonadotrophic hormones secretion in male domestic rabbits. Thyroid Research and Practice, 13, 136. doi: 10.4103/0973-0354.193135
[6] Elsnosy, E., Shaaban, O. M., Abbas, A. M., Gaber, H. H., & Darwish, A. (2017). Effects of antenatal dexamethasone administration on fetal and uteroplacental Doppler waveforms in women at risk for spontaneous preterm birth. Middle East Fertility Society Journal, 22(1), 13-17. doi: 10.1016/j.mefs.2016.09.007
[7] Fhead, A. J., Jellyman, J. K., Gardner, D. S., Giussani, D. A., Kaptein, E., Visser, Th. J., & Fowden, A. L. (2007). Differential Effects of Maternal Dexamethasone Treatment on Circulating Thyroid Hormone Concentrations and Tissue Deiodinase Activity in the Pregnant Ewe and Fetus. Endocrinology, 148(2), 800-805. doi: 10.1210/en.2006-1194.
[8] Fomina, K. A. (2006). Морфометрические показатели щитовидной железы крыс различного возраста при воздействии на их организм дексаметазона [Morphometric parameters of the rats thyroid gland of different ages when exposed to dexamethasone]. Український морфологiчний альманах – Ukrainian morphological almanac, 4(3), 96-99.
[9] Haram, K., Mortensen, J. H., Magann, E. F., & Morrison, J. C. (2017). Antenatal corticosteroid treatment: factors other than lung maturation. The Journal of Maternal-Fetal & Neonatal Medicine, 30(12), 1437-1441. doi: 10.1080/14767058.2016.1219716
[10] Hułas-Stasiak, M., Dobrowolski, P., & Tomaszewska, E. (2016). Prenatally administered dexamethasone impairs folliculogenesis in spiny mouse offspring. Reproduction, Fertility and Development, 28(7), 1038-1048. doi: 10.1071/RD14224
[11] Kashchenko, S. A., & Goncharova, M. V. (2013). Ультрамикроскопические изменения щитовидной железы крыс после иммуносупрессии [Submicroscopic сhanges in the rats thyroid gland after the immunosuppression]. Морфологія – Morphologia, 7(3), 49-53.
[12] Lv, F., Wan, Y., Chen, Y., Pei, L., Luo, D., Fan, G., ... & Wang, H. (2018). Prenatal dexamethasone exposure induced ovarian developmental toxicity and transgenerational effect in rat offspring. Endocrinology, 159(3), 1401-1415. doi: 10.1210/en.2018-00044
[13] Moisiadis, V. G., & Matthews, S. G. (2014). Glucocorticoids and fetal programming part 1: outcomes. Nat Rev Endocrinol, 10(7), 391-402. doi: 10.1038/nrendo.2014.73
[14] Nadolnik, L. I. (2010). Стресс и щитовидная железа [Stress and thyroid]. Биомедицинская химия – Biomedical Chemistry, 56(4), 443-456.
[15] Rizzo, L. F., Mana, D. L., & Serra, H. A. (2017). Drug-induced hypothyroidism. Medicina, 77, 394-404. PMID: 29044016
[16] Seckl, J. R. (2004). Prenatal glucocorticoids and long-term programming. Eur J Endocrinol, 151(3), 49-62. doi: 10.1530/eje.0.151u049
[17] Smirnova, T. S., Degtyar, Yu. V., Sharaevskaya, M. V., & Kapitonova, M. Yu. (2008). Иммуногистохимичеcкая характеристика щитовидной железы при хроническом стрессе [Immunohistochemical characteristics of the thyroid gland in chronic stress]. Вестник Волгоградского государственного медицинского университета – Bulletin of the Volgograd State Medical University, 4(28), 51-54.
[18] Todosenko, N. M., Koroleva, Yu. A., & Khazyakhmatova, O. H. (2017). Геномные и негеномные эффекты глюкокортикоидов [Genom and nongenom effects of glucocorticoids]. Гены и клетки – Gens and cells, 12(1), 27-33. doi: 10.23868/201703003
[19] Voloshin, N. A., Sapyanova, O. K., & Kireenkova, K. V. (2012). Вікові зміни щитоподібної залози білих щурів після дії гідрокортизону на організм [Age changes in thyroid gland white rats under influence on the organism hydrocortisone]. Український медичний альманах – Ukrainian Medical Almanac, 15(6), 190-191.
[20] Voloshyn, M. A., & Bohdanov, P. V. (2017). Особливості клітинного складу печінки щурів з першого до третього місяця післянатального життя в нормі та після внутрішньоутробного введення антигену та глюкокортикоїду [Peculiarities of rat liver cell composition from the first to the third month of postnatal life are normal and after intrauterine administration of antigen and glucocorticoid]. Актуальні питання медичної науки та практики – Current issues of medical science and practice, 84(1), 11-16.
[21] Yuan, H. J., Han, X., He, N., Wang, G. L., Gong, S., Lin, J., ... & Tan, J. H. (2016). Glucocorticoids impair oocyte developmental potential by triggering apoptosis of ovarian cells via activating the Fas system. Scientific reports, 6(1), 1-12. doi: 10.1038/srep24036
[22] Zagrebin, V. L., Kapitonova, M. Yu., Morozova, Z. Ch., & Smirnova, T. S. (2007). Морфологические аспекты адаптации эндокринной системы к действию стресса в раннем постнатальном онтогенезе [Morphological aspects of adaptation of the endocrine system to the action of chronic stress in early postnatal ontogenesis]. Успехи современного естествознания – Advances in modern natural science, 1, 64-65.
Published
2021-03-27
How to Cite
Fedosieieva, O. V., & Bushman, V. S. (2021). The effect of prenatal action of dexamethasone on morphological changes of the thyroid gland stromal compartment in juvenile rats. Biomedical and Biosocial Anthropology, (42), 29-33. https://doi.org/10.31393/bba42-2021-05