Reorganization of cerebellar cortex structural components one day after experimental thermal injury

  • N. V. Ohinska I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
Keywords: neurons, hemocapillaries, cerebellar cortex, thermal injury.


Thermal injury is a lesion caused by thermal agents. With deep and large burns, the course of this type of injury becomes a general disease of the whole organism with the involvement of vital organs. The skin is the first to perceive the action of this exogenous factor, and secondarily there are changes in all body systems, in particular in the cerebellum. The aim of our study was to establish micro- and submicroscopic changes in the structural components of the cerebellar cortex one day after the experimental thermal injury. Simulation of experimental thermal injury was performed on white laboratory male rats. Grade III burns were applied under thiopental-sodium anesthesia with copper plates heated in boiled water to a temperature of 97-100°C. The size of the affected area was 18-20 % of the epilated body surface of rats. The cerebellum was collected after one day, further processing of the material for micro- and submicroscopic examination was performed according to accepted methods. Histological specimens were stained with methylene blue, and for electron microscopy the obtained ultrathin sections were contrasted with uranyl acetate and lead citrate according to the Reynolds method. At the micro- and submicroscopic levels, it was found that 1 day after the experimental thermal injury, reactive changes are observed in neurons, microcirculatory tract and glial cells. Thus, one day after the thermal trauma of the skin, the experimental animals showed the initial violations of the blood-brain barrier of the cerebellar cortex, which are adaptive-compensatory in nature. Initial, destructive, changes in neuro-glial-capillary relations, which occur primarily on their damage to the walls of hemocapillaries and are manifested by a violation of the micro- and ultrastructure of the main cells of the cerebellum – Purkinje, neurocytes of molecular and granular layers, neuroglyocytes, with peri-gliocyocytes were found.


[1] Allen, N. J., & Lyons, D. A. (2018). Glia as architects of central nervous system formation and function. Science, 362(6411), 181-185. doi: 10.1126/science.aat0473
[2] Batiuk, M. Y., Martirosyan, A., Wahis, J., de Vin, F., Marneffe, C., Kusserow, C., & Holt, M. G. (2020). Identification of region-specific astrocyte subtypes at single cell resolution. Nature Communications, 11(1), 1-15. doi:10.1038/s41467-019-14198-8
[3] Bilash S. M., Pronina O. M., & Kononov B. S. (2020). Cучасні погляди на процеси реомоделювання структурних компонентів мозочка за умов дії комплексу хімічних речовин. [Modern representations about processes of re-modeling of structural components of the cerebell under conditions of action of the complex of chemicals]. Вісник проблем біології і медицини – Bulletin of problems of biology and medicine, 1(155), 20-25. doi: 10.29254/2077-4214-2020-1-155-20-25
[4] Duke, J. M., Randall, S. M., Fear, M. W., Boyd, J. H., Rea, S., & Wood, F. M. (2019). Burn induced nervous system morbidity among burn and non-burn trauma patients compared with non-injured people. Burns, 45(5), 1041-1050. doi: 10.1016/j.burns.2018.06.006 45
[5] Greenhalgh, D. G. (2019). Management of Burns. New England journal of medicine, 380(24), 2349-2359. doi: 10.1056/nejmra1807442
[6] Horalskyi, L. P., Khomych, V. T., & Kononskyi, O. I. (2005). Основи гістологічної техніки та морфофункціональних методів дослідження в нормі та при патології [Fundamentals of histological technique and morphofunctionalmethods of research in normal and pathology]. Державний агроекологічний університет – State Agroecological University. Житомир: Полісся – Zhytomyr: Polissya.
[7] Ivanochko, V. M., Hrechyn, A. B., & Pastukh, M. B. (2013). Особливості морфофункціонального стану мозочка в ранні терміни постгіпотермічного періоду. [Features of morphofunctional states of cerebellum in early terms of posthypothermic period]. Галицький лікарський вісник – Galician Medical Bulletin, 1(20), 33-35.
[8] Kononov, B. S. (2020). Структурна організація мозочку лабораторних тварин в нормі та у порівняльно-видовому аспекті. [Structural organization of the cerebella of laboratory animals in the norm and in the comparative special aspect]. Вісник проблем біології і медицини – Bulletin of problems of biology and medicine, 4(158), 272-276. doi: 10.29254/2077-4214-2020-4-158-272-276
[9] Makar, B. Н., & Bekesevych, A. М. (2015). Морфологічні особливості мозочка білого щура в нормі та за умов двотижневого введення опіоїду. [Morphological features of the white rat’s cerebellum in norm and under the influence of opioid during 2 weeks]. Науковий вісник Ужгородського університету, серія «Медицина» –Scientific Bulletin of Uzhhorod University, series "Medicine", 2(52), 20-23.
[10] Morozov, Yu. E., Dorosheva, Zh. V., Gornostaev, D. V., Koludarova, E. M., & Pigolkin, Yu. I. (2018). The morphological characteristic of the cerebellar cortex in the case of a burning injury. Forensic Medical Expertise, (4), 24-27. doi: 10.17116/sudmed201861424
[11] Olopade, F. E., Femi-Akinlosotu, O., Adekanmbi, A. J., Ajani, S., & Shokunbi, M. T. (2020). Neurobehavioural changes and morphological study of cerebellar purkinje cells in kaolin induced hydrocephalus. Anatomical Science International, 96(1), 87-96. doi: 10.1007/s12565-020-00561-z
[12] Perez-Pouchoulen, M., VanRyzin, J. W., & McCarthy, M. M. (2015). Morphological and phagocytic profile of microglia in the developing rat cerebellum. eNeuro, 2(4), 0036-15. doi: 10.1523/ENEURO.0036-15.2015
[13] Porter, C., Tompkins, R. G., Finnerty, C. C., Sidossis, L. S., Suman, O. E., & Herndon, D. N., (2016). The metabolic stress response to burn trauma: current understanding and therapies. Lancet, 388(10052), 1417-1426. doi: 10.1016/S0140-6736(16)31469-6
[14] Thibaut, A., Shie, V. L., Ryan, C. M., Zafonte, R., Ohrtman, E. A., Schneider, J. C., & Fregni, F. (2020). A review of burn symptoms and potential novel neural targets for non-invasive brain stimulation for treatment of burn sequelae. Burns, 47(3), 525-537. doi: 10.1016/j.burns.2020.06.005
[15] Tirado-Esteban, A., Seoane, J. L., Serracanta Domènech, J., Aguilera-Sаez, J., & Barret, J. P. (2020). Sensory alteration patterns in burned patients. Burns, 46(8), 1729-1736. doi: 10.1016/j.burns.2019.08.005
[16] Wallauer, M. M., Huf, F., Tortorelli, L. S., Rahmeier, F. L., Carvalho, F. B., Meurer, R. T., & da Cruz Fernandes, M. (2018). Morphological changes in the cerebellum as a result of ethanol treatment and cigarette smoke exposure: A study on astrogliosis, apoptosis and Purkinje cells. Neuroscience Letters, (672), 70–77. doi: 10.1016/j.neulet.2018.02.047 13;672:70-77
[17] Williams, A., Gow, A., Kilpatrick, S., Tivers, M., Lipscomb, V., Smith, K., & Mellanby, R. J. (2020). Astrocyte lesions in cerebral cortex and cerebellum of dogs with congenital ortosystemic shunting. J Vet Sci, 21(3), e44. doi: 10.4142/jvs.2020.21.e44
[18] Ye, H., & De, S. (2017). Thermal injury of skin and subcutaneous tissues: A review of experimental approaches and numerical models. Burns, 43(5), 909-932. doi: 10.1016/j.burns.2016.11.014
[19] Zeisel, A., Hochgerner, H., Lönnerberg, P., Johnsson, A., Memic, F., van der Zwan, J., & Linnarsson, S. (2018). Molecular Architecture of the Mouse Nervous System. Cell, 174(4), 999-1014.e22. doi: 10.1016/j.cell.2018.06.021
[20] Zuo, K. J., Medina, A., & Tredget, E. E. (2017). Important Developments in Burn Care. Plastic and Reconstructive Surgery, 139(1), 120e-138e. doi: 10.1097/prs.0000000000002908
How to Cite
Ohinska, N. V. (2021). Reorganization of cerebellar cortex structural components one day after experimental thermal injury. Biomedical and Biosocial Anthropology, (42), 34-38.