Associations of excess myocardial mass, echoreflectiveness and aldosterone synthase gene polymorphism in men with hypertension

  • N. Y. Osovska National Pirogov Memorial Medical University, Vinnytsya, Ukraine
  • M. S. Lozinska National Pirogov Memorial Medical University, Vinnytsya, Ukraine
  • S. E. Lozinsky National Pirogov Memorial Medical University, Vinnytsya, Ukraine
  • I. V. Taran National Pirogov Memorial Medical University, Vinnytsya, Ukraine
  • Y. V. Mazur National Pirogov Memorial Medical University, Vinnytsya, Ukraine
  • I. E. Dovganiuk National Pirogov Memorial Medical University, Vinnytsya, Ukraine
  • O. V. Gribenuk National Pirogov Memorial Medical University, Vinnytsya, Ukraine
  • N. V. Kuzminova National Pirogov Memorial Medical University, Vinnytsya, Ukraine
Keywords: aldosteronesynthase, CYP11B2, aldosterone, hypertension, left ventricular hypertrophy, excessiveness ratio, inappropriate left ventricular mass.

Abstract

Hypertensive remodeling of the left ventricle (LV) is largely due to the influence of a number of control genes. In particular, the regulatory gene CYP11B2, which is responsible for the activity of aldosterone in blood plasma, affects the processes of cardiomyocyte hypertrophy, myocardial fibrosis and microcirculation. This study is devoted to the search for the effect of polymorphic aldosterone synthase carriers on the severity of the components of left ventricular hypertrophy in men with essential hypertension (EH) and representatives of the control group, residents of Podyllia region. The aim of the study was to determine associations between excess (inappropriate) myocardial mass, parameters of standard echocardiography and parameters of echoreflectivity in men with essential hypertension, carriers of different polymorphic variants of aldosteronesynthase gene. The study involved 150 men, aged 45-60 years, residents of the Podyllia region, who had no irreversible damage of target organs. Among them, 50 were in the control group, 58 – had EH of 1st stage and 42 men had EH of 2nd stage. All participants were measured for office blood pressure, performed a standard echocardiographic examination with the addition of standard EchoCG protocol by determination of the parameters of echoreflectivity and evaluation of appropriateness of left ventricular l mass (LVM) to hemodynamic load, according to the formula de Simone et al. and calculating the excessiveness ratio (ER) and determined the C-344T polymorphism of the CYP11B2 gene in venous blood samples by PCR. Statistical processing of the obtained results is performed using a specialized statistical application “Statistica 12.0”. It was found that the prevalence of CC polymorphism of the CYP11B2 gene in men with inappropriate LVM was almost twice higher than in men with appropriate to hemodynamic load LVM (p=0.015 by criterion χ2). At the same time, men with inappropriate LVM were characterized by higher values of echoreflectivity parameters BB and mCSV. In contrast to patients of the control group and patients with EH of 1st stage, patients with EH of 2nd stage, actual LVM (287.4 (53.9) g) significantly (p<0.001) exceeded the predicted values (189 (37.8) g). According to the results of Spearman's rank correlation analysis, it was found that the carrier of the CC genotype of aldosterone synthase gene is associated with higher values of the LVM ER. Thus, patients carrying the polymorphic CC variant of CYP11B2 gene are characterized by more pronounced cardiomyocyte hypertrophy, greater excess of LV mass relative to individual hemodynamic needs, more aggressive processes of myocardial fibrosis.

References

[1] Abdel Ghafar, M. T. (2019). Association of aldosterone synthase CYP11B2 (-344C/T) gene polymorphism with essential hypertension and left ventricular hypertrophy in the Egyptian population. Clinical and Experimental Hypertension, 41(8), 779-786. doi: 10.1080/10641963.2018.1557679
[2] Brooks, J. E., Soliman, E. Z., & Upadhya, B. (2019). Is Left Ventricular Hypertrophy a Valid Therapeutic Target?. Current hypertension reports, 21(6), 47. doi: 10.1007/s11906-019-0952-9
[3] de Simone, G., & Palmieri, V. (2002). Valutazione ecocardiografica della ipertrofia ventricolare [Echocardiographic evaluation of ventricular hypertrophy]. Recenti progressi in medicina, 93(1), 58-62.
[4] de Simone, G., Izzo, R., Losi, M. A., Stabile, E., Rozza, F., Canciello, G., … & Trimarco, B. (2016). Depressed myocardial energetic efficiency is associated with increased cardiovascular risk in hypertensive left ventricular hypertrophy. Journal of hypertension, 34(9), 1846-1853. doi: 10.1097/HJH.0000000000001007
[5] Hiremath, P., Lawler, P. R., Ho, J. E., Correia, A. W., Abbasi, S. A., Kwong, R. Y., … & Cheng, S. (2016). Ultrasonic Assessment of Myocardial Microstructure in Hypertrophic Cardiomyopathy Sarcomere Mutation Carriers With and Without Left Ventricular Hypertrophy. Circulation. Heart failure, 9(9), e003026. doi: 10.1161/CIRCHEARTFAILURE.116.003026
[6] Kim, S. M., Kang, J. O., Lim, J. E., Hwang, S. Y., & Oh, B. (2017). Csk Regulates Blood Pressure by Controlling the Synthetic Pathways of Aldosterone. Circulation journal: official journal of the Japanese Circulation Society, 82(1), 168-175. doi: 10.1253/circj.CJ-17-0080
[7] Kunišek, J., & Kunišek, L. (2018). Impact of blood pressure components on left ventricular hypertrophy remodeling. Acta clinica Croatica, 57(4), 638-645. doi: 10.20471/acc.2018.57.04.05
[8] Muiesan, M. L., Salvetti, M., Rizzoni, D., Monteduro, C., Castellano, M., & Agabiti-Rosei, E. (1996). Persistence of left ventricular hypertrophy is a stronger indicator of cardiovascular events than baseline left ventricular mass or systolic performance: 10 years of follow-up. Journal of hypertension. Supplement: official journal of the International Society of Hypertension, 14(5), S43-S49.
[9] Nwabuo, C. C., & Vasan, R. S. (2020). Pathophysiology of Hypertensive Heart Disease: Beyond Left Ventricular Hypertrophy. Curr Hypertens Rep, 22(2), 11. doi: 10.1007/s11906-020-1017-9
[10] Pan, C. T., Wu, X. M., Tsai, C. H., Chang, Y. Y., Chen, Z. W., Chang, C. C., … & Lin, Y. H. (2021). Hemodynamic and Non-Hemodynamic Components of Cardiac Remodeling in Primary Aldosteronism. Frontiers in endocrinology, (12), 364. doi: 10.3389/fendo.2021.646097
[11] Pedersen, L. R., Kristensen, A., Petersen, S. S., Vaduganathan, M., Bhatt, D. L., Juel, J., … & Pareek, M. (2020). Prognostic implications of left ventricular hypertrophy diagnosed on electrocardiogram vs echocardiography. Journal of clinical hypertension (Greenwich, Conn.), 22(9), 1647-1658. doi: 10.1111/jch.13991
[12] Rossi, G. P., Cesari, M., Cuspidi, C., Maiolino, G., Cicala, M. V., Bisogni, V., … & Pessina, A. C. (2013). Long-term control of arterial hypertension and regression of left ventricular hypertrophy with treatment of primary aldosteronism. Hypertension, 62(1), 62-69. doi: 10.1161/HYPERTENSIONAHA.113.01316
[13] Rouet-Benzineb, P., Merval, R., & Polidano, E. (2018). Effects of hypoestrogenism and/or hyperaldosteronism on myocardial remodeling in female mice. Physiological reports, 6(21), e13912. doi: 10.14814/phy2.13912
[14] Shemirani, H., Hemmati, R., Khosravi, A., Gharipour, M., & Jozan, M. (2012). Echocardiographic assessment of inappropriate left ventricular mass and left ventricular hypertrophy in patients with diastolic dysfunction. Journal of research in medical sciences: the official journal of Isfahan University of Medical Sciences, 17(2), 133-137.
[15] Sorrentino, M. J. (2019). The Evolution from Hypertension to Heart Failure. Heart failure clinics, 15(4), 447-453. doi: 10.1016/j.hfc.2019.06.005
[16] Stevens, T. M., Saha, J. K., & Du, Y. (2018). The Role of Aldosterone in Hypertension and Related Morbidities. Annals of Hypertension, 1(1), 110-118.
[17] Stewart, M. H., Lavie, C. J., Shah, S., Englert, J., Gilliland, Y., Qamruddin, S., … & Milani, R. (2018). Prognostic Implications of Left Ventricular Hypertrophy. Progress in cardiovascular diseases, 61(5-6), 446-455. doi: 10.1016/j.pcad.2018.11.002
[18] Stiermaier, T., Pöss, J., Eitel, C., de Waha, S., Fuernau, G., Desch, S., … & Eitel, I. (2018). Impact of left ventricular hypertrophy on myocardial injury in patients with ST-segment elevation myocardial infarction. Clinical research in cardiology: official journal of the German Cardiac Society, 107(11), 1013-1020. doi: 10.1007/s00392-018-1273-8
[19] Sydorchuk, L., Dzhuryak, V., Sydorchuk, A., Levytska, S., Petrynych, V., Knut, R., … & Sydorchuk, R. (2020). The cytochrome 11B2 aldosterone synthase gene rs1799998 single nucleotide polymorphism determines elevated aldosterone, higher blood pressure, and reduced glomerular filtration, especially in diabetic female patients. Endocrine regulations, 54(3), 217-226.
[20] Vassiliou, V. S., Wassilew, K., Cameron, D., Heng, E. L., Nyktari, E., Asimakopoulos, G., … & Prasad, S. K. (2018). Identification of myocardial diffuse fibrosis by 11 heartbeat MOLLI T 1 mapping: averaging to improve precision and correlation with collagen volume fraction. Magma (New York, N.Y.), 31(1), 101-113. doi: 10.1007/s10334-017-0630-3
[21] Williams, B., Mancia, G., Spiering, W., Agabiti Rosei, E., Azizi, M., Burnier, M., ... & Desormais, I. (2018). 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). European heart journal, 39(33), 3021-3104. doi: 10.1093/eurheartj/ehy339
[22] Wu, L. M., Wu, R., Ou, Y. R., Chen, B. H., Yao, Q. Y., Lu, Q., … & Xu, J. R. (2017). Fibrosis quantification in Hypertensive Heart Disease with LVH and Non-LVH: Findings from T1 mapping and Contrast-free Cardiac Diffusion-weighted imaging. Scientific reports, 7(1), 559. doi: 10.1038/s41598-017-00627-5
[23] Yi, S., Wang, F., Wan, M., Yi, X., Zhang, Y., & Sun, S. (2020). Prediction of stroke with electrocardiographic left ventricular hypertrophy in hypertensive patients: A meta-analysis. Journal of electrocardiology, (61), 27-31. doi: 10.1016/j.jelectrocard.2020.04.018
[24] Yildiz, M., Oktay, A. A., Stewart, M. H., Milani, R. V., Ventura, H. O., & Lavie, C. J. (2020). Left ventricular hypertrophy and hypertension. Progress in cardiovascular diseases, 63(1), 10-21. doi: 10.1016/j.pcad.2019.11.009
[25] Yin, C., Gu, W., Gao, Y., Li, Z., Chen, X., Li, Z., & Wen, S. (2017). Association of the -344T/C polymorphism in aldosterone synthase gene promoter with left ventricular structure in Chinese Han: A meta-analysis. Clinical and experimental hypertension, 39(6), 562-569. doi: 10.1080/10641963.2017.1291660
Published
2021-03-27
How to Cite
Osovska, N. Y., Lozinska, M. S., Lozinsky, S. E., Taran, I. V., Mazur, Y. V., Dovganiuk, I. E., Gribenuk, O. V., & Kuzminova, N. V. (2021). Associations of excess myocardial mass, echoreflectiveness and aldosterone synthase gene polymorphism in men with hypertension. Biomedical and Biosocial Anthropology, (42), 44-51. https://doi.org/10.31393/bba42-2021-08