@article{Maryenko_Stepanenko_2020, title={Fractal dimension of the cortex and white matter of human cerebellum (magnetic resonance imaging study)}, url={https://bba-journal.com/index.php/journal/article/view/417}, DOI={10.31393/bba38-2020-10}, abstractNote={<p>The cerebellum is a typical structure with fractal properties, so fractal analysis is one of the main morphometric techniques that allow a comprehensive assessment of its morphofunctional state; the development of methods for differential measurement of the fractal dimension of various components of cerebellar tissue is necessary for complex morphological examination of the cerebellum using fractal analysis. The aim of the study was to develop an algorithm for differential fractal analysis and to determine the values of the fractal dimension of the cortex and white matter of human cerebellum using the study of magnetic resonance imaging scans. Digital T2 weighted magnetic resonance imaging scans of 30 conditionally healthy persons were used in the study. Fractal analysis of the distinct components of the cerebellar tissue was performed using the pixel dilation method. The fractal dimension values for all threshold brightness values (from 0 to 255) were determined. The confidence interval of the fractal dimension values based on the average values of the fractal dimension of the entire range of brightness values was calculated. Algorithms for image preprocessing were developed for an individual study of the different components of the cerebellum: cerebellar tissue as a whole, white matter, molecular and granular layers of the cortex. A differential fractal analysis technique has been developed to assess individual components of the cerebellar tissue. The values of the fractal dimension of white matter, granular and molecular layers of the cerebellar cortex were determined. The values of the fractal dimension of cerebellar tissue as a whole and the fractal dimension of the cerebellar cortex as a whole were the biggest. These values exceed the value of the fractal dimension of white matter. The average value of the fractal dimension (FD) for the threshold value of 80 (white matter) was 1.318±0.050, for the value of 90 (white matter and the granular layer of the cortex) was 1.568±0.028, for the value of 100 (cerebellar tissue as a whole) was 1.694±0.010. The average FD of the granular layer of the cortex (brightness range 81-90) was 1.377±0.020, the FD of the molecular layer of the cortex (brightness range 91-100) was 1.353±0.020, the average FD of the cerebellar cortex as a whole (brightness range 81-100) was 1.564±0.018. The obtained data can be used as diagnosis criteria to assess the morphofunctional state of the cerebellum using magnetic resonance imaging.</p&gt;}, number={38}, journal={Biomedical and Biosocial Anthropology}, author={Maryenko, N. I. and Stepanenko, O. Yu.}, year={2020}, month={Sep.}, pages={69-74} }